Automatic SWMM Parameter Calibration Method Based on the Differential Evolution and Bayesian Optimization Algorithm

In response to the low accuracy exhibited by the Storm Water Management Model (SWMM), we propose an enhanced Differential Evolution and Bayesian Optimization Algorithm (DE-BOA). This algorithm integrates the global search capability of the differential evolution algorithm with the local search capab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) Jg. 15; H. 20; S. 3582
Hauptverfasser: Gao, Jiawei, Liang, Ji, Lu, Yu, Zhou, Ruilong, Lu, Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2023
Schlagworte:
ISSN:2073-4441, 2073-4441
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In response to the low accuracy exhibited by the Storm Water Management Model (SWMM), we propose an enhanced Differential Evolution and Bayesian Optimization Algorithm (DE-BOA). This algorithm integrates the global search capability of the differential evolution algorithm with the local search capability of the Bayesian optimization algorithm, which enables a more comprehensive exploration of the vector solution space. A comparative analysis of various types of rainfall events is conducted. For model calibration and validation, a drainage subzone in Jinshazhou, Guangzhou City, is selected as the research subject. In total, 20 specific rainfall events are selected, and the DE-BOA algorithm outperforms the manual calibration, the differential evolution algorithm, and the Bayesian optimization algorithm regarding model calibration accuracy. Furthermore, the DE-BOA algorithm exhibits robust adaptability to rainfall events characterized by multiple peaks and higher precipitation levels, with the Nash–Sutcliffe efficiency coefficient values surpassing 0.90. This study’s findings could hold significant reference value for dynamically updating model parameters, thereby enhancing the model simulation performance and improving the accuracy of the urban intelligent water management platform.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w15203582