Distributed Neuro-Dynamic Optimization for Multi-Objective Power Management Problem in Micro-Grid
This paper focuses on a multi-objective power management problem considering demand response in micro grid. The multi-objective problem consists of four conflicting objective functions: the average efficiency function of DG (Diesel Generation) unit, the emission of micro-grid, the dissatisfaction ca...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 362; s. 51 - 59 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
14.10.2019
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper focuses on a multi-objective power management problem considering demand response in micro grid. The multi-objective problem consists of four conflicting objective functions: the average efficiency function of DG (Diesel Generation) unit, the emission of micro-grid, the dissatisfaction caused by demand response and the total profit function. A single-objective product formulation is applied to convert the multi-objective optimization problem into a single-objective optimization problem. It is shown that the optimal solution of single-objective problem is a pareto optimal point of the original multi-objective problem. Then, using a logarithmic obstacle penalty parameter to deal with the inequality constraint, a distributed neuro-dynamic algorithm is proposed for the aforementioned single-objective optimization problem. Lasalle’s invariance principle and Lyapunov function are used to prove that the proposed algorithm can converge to the optimal solution. Finally, the numerical simulation in the micro-grid illustrates the feasibility of the proposed algorithm. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2019.05.096 |