Optimizing the SVD Bidiagonalization Process for a Batch of Small Matrices

A challenging class of problems arising in many GPU applications, called batched problems, involves linear algebra operations on many small-sized matrices. We designed batched BLAS (Basic Linear Algebra Subroutines) routines, and in particular the Level-2 BLAS GEMV and the Level-3 BLAS GEMM routines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 108; S. 1008 - 1018
Hauptverfasser: Dong, Tingxing, Haidar, Azzam, Tomov, Stanimire, Dongarra, Jack
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2017
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A challenging class of problems arising in many GPU applications, called batched problems, involves linear algebra operations on many small-sized matrices. We designed batched BLAS (Basic Linear Algebra Subroutines) routines, and in particular the Level-2 BLAS GEMV and the Level-3 BLAS GEMM routines, to solve them. We proposed device functions and big-tile settings in our batched BLAS design. We adopted auto-tuning to optimize different instances of GEMV routines. We illustrated our batched BLAS approach to optimize batched bi-diagonalization progressively on a K40c GPU. The optimization techniques in this paper are applicable to the other two-sided factorizations as well.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2017.05.237