Cylindrical Algebraic Sub-Decompositions

Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science Jg. 8; H. 2; S. 263 - 288
Hauptverfasser: Wilson, D. J., Bradford, R. J., Davenport, J. H., England, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel Springer Basel 01.06.2014
Schlagworte:
ISSN:1661-8270, 1661-8289
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple .
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-014-0191-z