Cylindrical Algebraic Sub-Decompositions

Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics in computer science Ročník 8; číslo 2; s. 263 - 288
Hlavní autoři: Wilson, D. J., Bradford, R. J., Davenport, J. H., England, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel Springer Basel 01.06.2014
Témata:
ISSN:1661-8270, 1661-8289
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple .
AbstractList Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple .
Author Davenport, J. H.
Wilson, D. J.
Bradford, R. J.
England, M.
Author_xml – sequence: 1
  givenname: D. J.
  surname: Wilson
  fullname: Wilson, D. J.
  organization: Department of Computer Science, University of Bath
– sequence: 2
  givenname: R. J.
  surname: Bradford
  fullname: Bradford, R. J.
  organization: Department of Computer Science, University of Bath
– sequence: 3
  givenname: J. H.
  surname: Davenport
  fullname: Davenport, J. H.
  organization: Department of Computer Science, University of Bath
– sequence: 4
  givenname: M.
  surname: England
  fullname: England, M.
  email: M.England@bath.ac.uk
  organization: Department of Computer Science, University of Bath
BookMark eNp9j01rwzAMQM3oYG23H7Bbj7t4s-zMSo4l-4TCDtvOxnbs4pImxU4P7a-fS8YOOxQkJJCe0JuRSdd3jpBbYPfAGD4kACwlZVDkrIAeL8gUpARa8rKa_PXIrsgspQ1jkkMBU3JXH9rQNTFY3S6W7dqZqINdfO4NfXK23-76FIbQd-maXHrdJnfzW-fk--X5q36jq4_X93q5olbIYqC2EJiDGf5oseIVl94YJnwBTelYYcE32KDhiGjzSBvvUYAQHnwpELSYExzv2tinFJ1XNgz69MKQP2sVMHUSVqOwysLqJKyOmYR_5C6GrY6HswwfmZR3u7WLatPvY5cFz0A_PT9qYQ
CitedBy_id crossref_primary_10_1016_j_jlamp_2020_100633
crossref_primary_10_1016_j_jsc_2019_07_008
crossref_primary_10_1016_j_jsc_2019_07_019
crossref_primary_10_1016_j_automatica_2022_110484
crossref_primary_10_1016_j_jsc_2015_11_002
crossref_primary_10_1007_s11786_019_00394_8
crossref_primary_10_1186_s12859_022_04921_6
Cites_doi 10.1145/968708.968710
10.1007/978-3-642-32347-8_1
10.1006/jsco.1999.0327
10.1137/0213054
10.1016/S0747-7171(08)80152-6
10.1093/comjnl/36.5.432
10.1016/0196-8858(83)90014-3
10.1016/S0747-7171(88)80004-X
10.1145/12917.12919
10.1016/j.jsc.2005.09.011
10.1006/jsco.2001.0463
10.1016/j.jsc.2006.06.004
10.1145/384101.384132
10.1145/2465506.2465952
10.1145/1277548.1277557
10.1007/978-3-642-39320-4_2
10.1007/978-3-7091-9459-1_12
10.1145/2442829.2442877
10.1145/860854.860903
10.1145/1005285.1005303
10.21236/ADA460719
10.1145/2465506.2465516
10.1145/1837934.1837952
10.1109/SYNASC.2012.68
10.1145/1073884.1073897
10.1145/96877.96943
10.1145/1576702.1576718
10.1007/3-540-07407-4_17
10.1145/309831.309892
10.1145/1577190.1577203
10.1145/780506.780509
ContentType Journal Article
Copyright The Author(s) 2014
Copyright_xml – notice: The Author(s) 2014
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11786-014-0191-z
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
EndPage 288
ExternalDocumentID 10_1007_s11786_014_0191_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c364t-c4374370b25c792926fbb03f41d8e04c1fd7d7b2777c6fbabff73133f1f8371a3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000214008500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8270
IngestDate Sat Nov 29 06:37:37 EST 2025
Tue Nov 18 21:00:49 EST 2025
Fri Feb 21 02:37:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cylindrical algebraic decomposition
Real algebraic geometry
68W30 (Symbolic Computation and Algebraic Computation)
Symbolic computation
Computer algebra
Equational constraints
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c4374370b25c792926fbb03f41d8e04c1fd7d7b2777c6fbabff73133f1f8371a3
OpenAccessLink https://link.springer.com/10.1007/s11786-014-0191-z
PageCount 26
ParticipantIDs crossref_citationtrail_10_1007_s11786_014_0191_z
crossref_primary_10_1007_s11786_014_0191_z
springer_journals_10_1007_s11786_014_0191_z
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2014
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References CR19
CR17
Paulson, Beringer, Felty (CR36) 2012
CR39
CR16
CR15
CR14
CR13
CR35
CR34
CR11
CR33
CR10
CR32
CR30
Phisanbut, Bradford, Davenport (CR37) 2010; 44
Strzeboński (CR40) 2000; 29
Strzeboński (CR41) 2006; 41
Brown (CR7) 2001; 32
Collins, Hong (CR18) 1991; 12
Davenport (CR20) 1986; 20
Brown (CR8) 2003; 37
Brown, El Kahoui, Novotni, Weber (CR12) 2006; 41
Schwartz, Sharir (CR38) 1983; 4
CR2
CR4
CR3
CR6
CR5
CR29
CR28
CR9
England, Bradford, Davenport, Wilson, Carette, Aspinall, Lange, Sojka, Windsteiger (CR26) 2013
CR27
CR25
CR24
CR23
CR45
CR44
CR21
CR43
CR42
McCallum (CR31) 1993; 36
Davenport, Heintz (CR22) 1988; 5
Arnon, Collins, McCallum (CR1) 1984; 13
191_CR9
A. Strzeboński (191_CR41) 2006; 41
191_CR5
191_CR6
C.W. Brown (191_CR12) 2006; 41
191_CR10
191_CR32
191_CR11
191_CR33
191_CR34
191_CR13
191_CR35
G.E. Collins (191_CR18) 1991; 12
191_CR30
191_CR2
191_CR19
191_CR3
L.C. Paulson (191_CR36) 2012
J.T. Schwartz (191_CR38) 1983; 4
191_CR4
191_CR14
D. Arnon (191_CR1) 1984; 13
191_CR15
A. Strzeboński (191_CR40) 2000; 29
191_CR16
191_CR17
191_CR39
J.H. Davenport (191_CR20) 1986; 20
C.W. Brown (191_CR8) 2003; 37
S. McCallum (191_CR31) 1993; 36
N. Phisanbut (191_CR37) 2010; 44
C.W. Brown (191_CR7) 2001; 32
191_CR21
191_CR43
191_CR44
191_CR23
M. England (191_CR26) 2013
191_CR45
191_CR24
J.H. Davenport (191_CR22) 1988; 5
191_CR42
191_CR29
191_CR25
191_CR27
191_CR28
References_xml – ident: CR45
– volume: 44
  start-page: 132
  issue: 3
  year: 2010
  end-page: 135
  ident: CR37
  article-title: Geometry of branch cuts
  publication-title: ACM Commun. Comput. Algebra
– ident: CR43
– ident: CR4
– volume: 37
  start-page: 97
  issue: 4
  year: 2003
  end-page: 108
  ident: CR8
  article-title: An overview of QEPCAD B: a program for computing with semi-algebraic sets using CADs
  publication-title: ACM SIGSAM Bull.
  doi: 10.1145/968708.968710
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR16
– start-page: 1
  year: 2012
  end-page: 10
  ident: CR36
  article-title: Metitarski: past and future
  publication-title: Interactive Theorem Proving. LNCS, vol. 7406
  doi: 10.1007/978-3-642-32347-8_1
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 29
  start-page: 471
  issue: 3
  year: 2000
  end-page: 480
  ident: CR40
  article-title: Solving systems of strict polynomial inequalities
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1999.0327
– ident: CR25
– ident: CR27
– ident: CR42
– ident: CR23
– ident: CR21
– ident: CR19
– ident: CR44
– start-page: 136
  year: 2013
  end-page: 151
  ident: CR26
  article-title: Understanding branch cuts of expressions
  publication-title: Intelligent Computer Mathematics. LNCS, vol. 7961
– volume: 13
  start-page: 865
  year: 1984
  end-page: 877
  ident: CR1
  article-title: Cylindrical algebraic decomposition I: the basic algorithm
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213054
– volume: 12
  start-page: 299
  year: 1991
  end-page: 328
  ident: CR18
  article-title: Partial cylindrical algebraic decomposition for quantifier elimination
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80152-6
– ident: CR3
– ident: CR15
– volume: 36
  start-page: 432
  issue: 5
  year: 1993
  end-page: 438
  ident: CR31
  article-title: Solving polynomial strict inequalities using cylindrical algebraic decomposition
  publication-title: Comput. J.
  doi: 10.1093/comjnl/36.5.432
– volume: 4
  start-page: 298
  year: 1983
  end-page: 351
  ident: CR38
  article-title: On the “Piano-Movers” problem: II. General techniques for computing topological properties of real algebraic manifolds
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(83)90014-3
– ident: CR17
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 5
  start-page: 29
  issue: 1–2
  year: 1988
  end-page: 35
  ident: CR22
  article-title: Real quantifier elimination is doubly exponential
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80004-X
– ident: CR32
– volume: 20
  start-page: 15
  issue: 1–2
  year: 1986
  end-page: 17
  ident: CR20
  article-title: A “Piano-Movers” problem
  publication-title: SIGSAM Bull.
  doi: 10.1145/12917.12919
– ident: CR34
– ident: CR5
– volume: 41
  start-page: 1157
  year: 2006
  end-page: 1173
  ident: CR12
  article-title: Algorithmic methods for investigating equilibria in epidemic modelling
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2005.09.011
– ident: CR28
– ident: CR24
– volume: 32
  start-page: 447
  issue: 5
  year: 2001
  end-page: 465
  ident: CR7
  article-title: Improved projection for cylindrical algebraic decomposition
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2001.0463
– volume: 41
  start-page: 1021
  issue: 9
  year: 2006
  end-page: 1038
  ident: CR41
  article-title: Cylindrical algebraic decomposition using validated numerics
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2006.06.004
– volume: 37
  start-page: 97
  issue: 4
  year: 2003
  ident: 191_CR8
  publication-title: ACM SIGSAM Bull.
  doi: 10.1145/968708.968710
– volume: 12
  start-page: 299
  year: 1991
  ident: 191_CR18
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80152-6
– start-page: 136
  volume-title: Intelligent Computer Mathematics. LNCS, vol. 7961
  year: 2013
  ident: 191_CR26
– ident: 191_CR35
  doi: 10.1145/384101.384132
– ident: 191_CR2
– ident: 191_CR10
  doi: 10.1145/2465506.2465952
– ident: 191_CR32
– ident: 191_CR11
  doi: 10.1145/1277548.1277557
– ident: 191_CR6
  doi: 10.1007/978-3-642-39320-4_2
– ident: 191_CR15
– volume: 20
  start-page: 15
  issue: 1–2
  year: 1986
  ident: 191_CR20
  publication-title: SIGSAM Bull.
  doi: 10.1145/12917.12919
– ident: 191_CR33
  doi: 10.1007/978-3-7091-9459-1_12
– ident: 191_CR30
– ident: 191_CR43
  doi: 10.1145/2442829.2442877
– ident: 191_CR39
  doi: 10.1145/860854.860903
– volume: 41
  start-page: 1021
  issue: 9
  year: 2006
  ident: 191_CR41
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2006.06.004
– ident: 191_CR19
– volume: 13
  start-page: 865
  year: 1984
  ident: 191_CR1
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213054
– ident: 191_CR23
  doi: 10.1145/1005285.1005303
– ident: 191_CR9
  doi: 10.21236/ADA460719
– ident: 191_CR4
  doi: 10.1145/2465506.2465516
– ident: 191_CR42
  doi: 10.1145/1837934.1837952
– start-page: 1
  volume-title: Interactive Theorem Proving. LNCS, vol. 7406
  year: 2012
  ident: 191_CR36
  doi: 10.1007/978-3-642-32347-8_1
– ident: 191_CR21
  doi: 10.1109/SYNASC.2012.68
– ident: 191_CR25
– ident: 191_CR13
  doi: 10.1145/1073884.1073897
– ident: 191_CR27
– ident: 191_CR44
– ident: 191_CR28
  doi: 10.1145/96877.96943
– volume: 5
  start-page: 29
  issue: 1–2
  year: 1988
  ident: 191_CR22
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(88)80004-X
– ident: 191_CR14
– volume: 36
  start-page: 432
  issue: 5
  year: 1993
  ident: 191_CR31
  publication-title: Comput. J.
  doi: 10.1093/comjnl/36.5.432
– ident: 191_CR16
  doi: 10.1145/1576702.1576718
– ident: 191_CR17
  doi: 10.1007/3-540-07407-4_17
– ident: 191_CR5
– ident: 191_CR34
  doi: 10.1145/309831.309892
– ident: 191_CR29
  doi: 10.1145/1577190.1577203
– volume: 32
  start-page: 447
  issue: 5
  year: 2001
  ident: 191_CR7
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.2001.0463
– ident: 191_CR3
  doi: 10.1145/780506.780509
– volume: 41
  start-page: 1157
  year: 2006
  ident: 191_CR12
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2005.09.011
– volume: 29
  start-page: 471
  issue: 3
  year: 2000
  ident: 191_CR40
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1999.0327
– volume: 4
  start-page: 298
  year: 1983
  ident: 191_CR38
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(83)90014-3
– ident: 191_CR24
– volume: 44
  start-page: 132
  issue: 3
  year: 2010
  ident: 191_CR37
  publication-title: ACM Commun. Comput. Algebra
– ident: 191_CR45
SSID ssj0062141
Score 2.0679467
Snippet Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Computer Science
Mathematics
Mathematics and Statistics
Title Cylindrical Algebraic Sub-Decompositions
URI https://link.springer.com/article/10.1007/s11786-014-0191-z
Volume 8
WOSCitedRecordID wos000214008500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8270
  databaseCode: RSV
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxftGDB1ECTZv2tccxHR50iB9jt9K-JDIYU9YpuL_epGs3Biroua9JeEneB-_l9wM4kxinWhNnpCllgnTM0jiQTBIq7YWx0gVLRO8Wu92o34_vy3fcedXtXpUkC0u9eOzGMbLZr-2aiDmbrsKa8XaR5Wt4eOxV5jf0ZnSV3DgeFnk4L2V-N8SyM1quhBYOplP_19K2YauMJ53W7ADswIoaNaBecTU45dVtwObdHJ8134Xz9qeZRxbwIE5r-GKrxwNyjBVhV8p2mVetXHvw3Ll-at-wkjOBkR-KCSPhm5gA3cwLCE3o44U6y1xfCy4j5QriWqLEzENEMp_STGv0TZ6quTapKk_9faiNXkfqAJzARBJoHDwJjISvopirMNA6DdDEaESiCW6lvIRKQHHLazFMFlDIVi-J0Uti9ZJMm3Ax_-Vthqbxm_Blpe2kvFj5z9KHf5I-gg2v2C67a8dQm4zf1Qms08dkkI9PiwP1BYZBxV4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f_bBB1ECS5v22scxHRO3ITrH3kp7TWQwpmxTcH-9SdduDFTQ516TcEnuvuMu3wFcJBhEShFnpChiglTAosBNWEIole0FUqVdIrpNbLf9Xi94yN5xj_Nq9zwlmVrqxWM3jr6Jfk3VRMDZdBXWhHZYhjD_8ambm1_PnrWr5NrxMN_GeSrzuyGWndFyJjR1MPXiv5a2A9sZnrSqswOwCytyWIJi3qvByq5uCbZac37W8R5c1j71PElKD2JVBy8me9wnS1sRdiNNlXleyrUPz_XbTq3Bsp4JjBxPTBgJR2MCrMS2S6ihj-2pOK44SvDElxVBXCWYYGwjIulPUawUOjpOVVzpUJVHzgEUhq9DeQiWq5EEagdPAn3hSD_g0nOVilzUGI1IlKGSKy-kjFDc9LUYhAsqZKOXUOslNHoJp2W4mv_yNmPT-E34Otd2mF2s8c_SR3-SPoeNRqfVDJt37ftj2LTTrTM7eAKFyehdnsI6fUz649FZeri-ANEXyEI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszxw8iLI0m2yyybFUi2ItBbX0FpLNjhRKLU0U7K93N4-WggriOZNNmH3MDPPt9wFcxNwPEQUlAkVImECfhL4Tk1hwiZbrS8xUIvod3u16g4HfK3ROkxLtXrYk8zsNmqVpnDYmMTYWF98o93QlrBEUPiWzVVhjGkevy_WnfnkUu1YuXUlVECKexedtze-GWA5My13RLNi0q__-zR3YLvJMo5kvjF1YkeMaVEsNB6PY0jXYepzztiZ7cNn6VN-MM9oQozl61V3loTDU6UJupEaflxCvfXhp3z637kihpUCE7bKUCGarXIGbkeUIrlIiy8UoMm1kNPakyQTFmMc8sjjnQj0KI0Ruq_oVKaoSlob2AVTGb2N5CIajMgyuAr9g3GO29HwqXQcxdLjK3YRgdTBLRwaiIBrXehejYEGRrP0SKL8E2i_BrA5X81cmOcvGb8bXpeeDYsMlP1sf_cn6HDZ6N-2gc999OIZNK5s5PYEnUEmn7_IU1sVHOkymZ9k6-wLRQdEm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cylindrical+Algebraic+Sub-Decompositions&rft.jtitle=Mathematics+in+computer+science&rft.au=Wilson%2C+D.+J.&rft.au=Bradford%2C+R.+J.&rft.au=Davenport%2C+J.+H.&rft.au=England%2C+M.&rft.date=2014-06-01&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=8&rft.issue=2&rft.spage=263&rft.epage=288&rft_id=info:doi/10.1007%2Fs11786-014-0191-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11786_014_0191_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon