Topology Optimization Based Parametric Design of Balloon Borne Telescope’s Primary Mirror

For balloon-borne telescopes, the primary mirror is the most important optical element, but designing a primary mirror with an excellent overall performance is a challenge. To comprehensively consider the contradictory objectives of the root mean square (RMS) surface error under gravity in the X and...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 11; no. 11; p. 5077
Main Authors: Liu, Fengchang, Li, Wei, Zhao, Weiguo, Zhao, Haibo, Lin, Guanyu, Wang, Xiaodong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2021
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For balloon-borne telescopes, the primary mirror is the most important optical element, but designing a primary mirror with an excellent overall performance is a challenge. To comprehensively consider the contradictory objectives of the root mean square (RMS) surface error under gravity in the X and Z directions, the mass and fundamental frequency of the primary mirror, a parametric primary mirror design using the compromise programming method based on topology optimization is proposed. The parametric design of the compromise programming method based on topology optimization is used to find the optimal solution for X-direction RMS (RMSx), Z-direction RMS (RMSz), mass, and fundamental frequency. Compared with the initial primary mirror structure designed according to traditional experience, the overall performance is improved. Results show that the respective mass of the primary mirror, the RMSx and the RMSz decreased by 8.5%, 14.3% and 10.5% compared to those before optimization. Comprehensive consideration can prove the effectiveness of parametric design based on the topology optimization of the primary mirror. This method provides a reference for the design of other primary mirrors for balloon-borne telescope and space cameras.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app11115077