Management of Distributed Renewable Energy Resources with the Help of a Wireless Sensor Network

Photovoltaic (PV) and wind energy are widely considered eco-friendly renewable energy resources. However, due to the unpredictable oscillations in solar and wind power production, efficient management to meet load demands is often hard to achieve. As a result, precise forecasting of PV and wind ener...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 14; p. 6908
Main Authors: Nengroo, Sarvar Hussain, Jin, Hojun, Lee, Sangkeum
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2022
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Photovoltaic (PV) and wind energy are widely considered eco-friendly renewable energy resources. However, due to the unpredictable oscillations in solar and wind power production, efficient management to meet load demands is often hard to achieve. As a result, precise forecasting of PV and wind energy production is critical for grid managers to limit the impact of random fluctuations. In this study, the kernel recursive least-squares (KRLS) algorithm is proposed for the prediction of PV and wind energy. The wireless sensor network (WSN) typically adopted for data collection with a flexible configuration of sensor nodes is used to transport PV and wind production data to the monitoring center. For efficient transmission of the data production, a link scheduling technique based on sensor node attributes is proposed. Different statistical and machine learning (ML) techniques are examined with respect to the proposed KRLS algorithm for performance analysis. The comparison results show that the KRLS algorithm surpasses all other regression approaches. For both PV and wind power feed-in forecasts, the proposed KRLS algorithm demonstrates high forecasting accuracy. In addition, the link scheduling proposed for the transmission of data for the management of distributed renewable energy resources is compared with a reference technique to show its comparable performance. The efficacy of the proposed KRLS model is better than other regression models in all assessment events in terms of an RMSE value of 0.0146, MAE value of 0.00021, and R2 of 99.7% for PV power, and RMSE value of 0.0421, MAE value of 0.0018, and R2 of 88.17% for wind power. In addition to this, the proposed link scheduling approach results in 22% lower latency and 38% higher resource utilization through the efficient scheduling of time slots.
AbstractList Photovoltaic (PV) and wind energy are widely considered eco-friendly renewable energy resources. However, due to the unpredictable oscillations in solar and wind power production, efficient management to meet load demands is often hard to achieve. As a result, precise forecasting of PV and wind energy production is critical for grid managers to limit the impact of random fluctuations. In this study, the kernel recursive least-squares (KRLS) algorithm is proposed for the prediction of PV and wind energy. The wireless sensor network (WSN) typically adopted for data collection with a flexible configuration of sensor nodes is used to transport PV and wind production data to the monitoring center. For efficient transmission of the data production, a link scheduling technique based on sensor node attributes is proposed. Different statistical and machine learning (ML) techniques are examined with respect to the proposed KRLS algorithm for performance analysis. The comparison results show that the KRLS algorithm surpasses all other regression approaches. For both PV and wind power feed-in forecasts, the proposed KRLS algorithm demonstrates high forecasting accuracy. In addition, the link scheduling proposed for the transmission of data for the management of distributed renewable energy resources is compared with a reference technique to show its comparable performance. The efficacy of the proposed KRLS model is better than other regression models in all assessment events in terms of an RMSE value of 0.0146, MAE value of 0.00021, and R2 of 99.7% for PV power, and RMSE value of 0.0421, MAE value of 0.0018, and R2 of 88.17% for wind power. In addition to this, the proposed link scheduling approach results in 22% lower latency and 38% higher resource utilization through the efficient scheduling of time slots.
Author Nengroo, Sarvar Hussain
Jin, Hojun
Lee, Sangkeum
Author_xml – sequence: 1
  givenname: Sarvar Hussain
  orcidid: 0000-0002-9651-9282
  surname: Nengroo
  fullname: Nengroo, Sarvar Hussain
– sequence: 2
  givenname: Hojun
  orcidid: 0000-0002-3751-4983
  surname: Jin
  fullname: Jin, Hojun
– sequence: 3
  givenname: Sangkeum
  orcidid: 0000-0001-6918-124X
  surname: Lee
  fullname: Lee, Sangkeum
BookMark eNptUV1LHTEQDWKhan3qHwj0UW6bj3U3eSxWq2AVVPAxzCaTa65rsia5XPz3jb2lSHFeZhjOOfNx9sluTBEJ-czZVyk1-wbzzAXves3UDtkTbOgXsuPD7pv6IzksZcVaaC4VZ3vE_IIIS3zCWGny9EcoNYdxXdHRG4y4gXFCehoxL19ao6R1tljoJtQHWh-QnuM0v_KA3oeME5ZCbzGWlOkV1k3Kj5_IBw9TwcO_-YDcnp3enZwvLq9_Xpx8v1xY2Xd1AR3j0DtUsmfAe-asGABR2E6DEBq1cwPYceRa8ZEPSuCo0CpU3tteygNysVV1CVZmzuEJ8otJEMyfRspLA7kGO6Hho1eg2gO8c50Dppzq_LHDkfkOwdmm9WWrNef0vMZSzapdHdvyRvRaatmeLRrqaIuyOZWS0f-bypl5tcO8saOh-X9oGyrUkGLNEKZ3Ob8BHN2QzA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3381859
crossref_primary_10_3390_en18185017
crossref_primary_10_3390_app12147315
crossref_primary_10_1016_j_eswa_2024_124759
crossref_primary_10_3390_en15228573
crossref_primary_10_1007_s11276_022_03186_4
crossref_primary_10_1016_j_est_2024_112489
crossref_primary_10_3390_app13021080
crossref_primary_10_1109_ACCESS_2024_3524097
crossref_primary_10_3390_electronics12204304
crossref_primary_10_3390_en16010096
crossref_primary_10_3389_fevo_2023_1132678
crossref_primary_10_3390_en15218042
Cites_doi 10.1016/j.rser.2015.07.024
10.3390/en12030446
10.1109/TSP.2004.830985
10.1016/j.ijepes.2015.07.039
10.1109/ACCESS.2015.2496117
10.1109/ACCESS.2019.2936863
10.1109/WCNC.2009.4917961
10.1155/2022/1575303
10.1109/JSEN.2017.2746183
10.1002/9781119482260
10.1609/aaai.v32i1.11635
10.1109/JSEN.2020.3035846
10.3390/app12094786
10.1109/72.914517
10.1109/TBC.2011.2105611
10.1016/j.jclepro.2020.122808
10.1109/TPWRS.2015.2418333
10.1016/j.enconman.2017.04.077
10.1016/j.solener.2011.11.013
10.3390/electronics7090177
10.1016/j.renene.2014.08.006
10.1049/rpg2.12195
10.1016/j.procs.2011.07.099
10.3390/electronics8020176
10.3390/su13126681
10.1088/1741-2560/11/1/016003
10.1002/er.7201
10.3390/en11051122
10.1109/ICRERA52334.2021.9598765
10.1007/978-3-319-29504-6_20
10.1016/j.rser.2016.11.026
10.3390/en12020215
10.1016/j.isci.2021.103286
10.1007/978-3-642-17994-5_14
10.3390/app10175975
10.3390/s17010122
10.1109/NAPS.2014.6965389
10.1109/TPWRS.2006.873018
10.3390/s21165668
10.1016/j.enbuild.2019.03.026
10.4018/978-1-7998-3222-5.ch009
10.1007/s00521-017-3225-z
10.1109/TITS.2018.2797991
10.1109/ACCESS.2019.2942012
10.1016/j.proenv.2011.12.196
10.1016/j.apenergy.2020.115098
10.1109/JSEN.2012.2188792
10.1016/j.comcom.2017.05.014
10.1109/TII.2017.2771256
10.1109/TVT.2018.2805189
10.1016/j.renene.2012.03.003
10.1155/2022/7952860
10.1109/ICPES53652.2021.9683905
10.1109/ACCESS.2019.2923006
10.1109/DSP-SPE.2013.6642587
10.1016/j.enconman.2019.111799
10.1016/j.renene.2004.09.020
10.1016/j.adhoc.2015.07.004
10.1109/TCNS.2021.3059851
10.1080/07474938.2010.481556
10.1016/j.comnet.2008.04.002
10.1109/ACCESS.2020.2969460
10.1109/TMC.2012.161
10.2172/919131
10.1109/TIE.2009.2039455
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12146908
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1bf8a8009fdd4da08d84f5deb0f4eadc
10_3390_app12146908
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-a401a6de8360a160dc27aee2c49a229e9dd7acbb1981b1782eb8ec8e8ffc633
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831882300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:40 EDT 2025
Thu Sep 11 11:41:42 EDT 2025
Sat Nov 29 07:10:36 EST 2025
Tue Nov 18 20:56:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-a401a6de8360a160dc27aee2c49a229e9dd7acbb1981b1782eb8ec8e8ffc633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9651-9282
0000-0001-6918-124X
0000-0002-3751-4983
OpenAccessLink https://doaj.org/article/1bf8a8009fdd4da08d84f5deb0f4eadc
PQID 2693933392
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1bf8a8009fdd4da08d84f5deb0f4eadc
proquest_journals_2693933392
crossref_primary_10_3390_app12146908
crossref_citationtrail_10_3390_app12146908
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Juaidi (ref_16) 2016; 55
(ref_22) 2005; 30
Lopes (ref_8) 2006; 21
Dabbaghjamanesh (ref_17) 2021; 8
Wang (ref_15) 2017; 14
ref_57
ref_56
ref_11
ref_55
ref_10
ref_54
Kim (ref_43) 2020; 21
Gad (ref_29) 2015; 74
Zhang (ref_41) 2019; 7
ref_18
Tobias (ref_52) 2012; 46
ref_61
Zhou (ref_37) 2019; 7
ref_69
Engel (ref_68) 2004; 52
ref_21
Ouyang (ref_39) 2017; 144
Yick (ref_50) 2008; 52
ref_64
Lee (ref_13) 2019; 191
Lee (ref_60) 2020; 18
Ding (ref_33) 2011; 11
Kim (ref_25) 2011; 57
ref_27
Shahid (ref_40) 2020; 269
Haghifam (ref_19) 2021; 278
Aijaz (ref_28) 2017; 17
Qayyum (ref_12) 2015; 3
Ahmed (ref_46) 2010; 29
Ali (ref_65) 2021; 24
(ref_51) 2011; 5
Wang (ref_20) 2019; 198
Schudlo (ref_67) 2013; 11
ref_34
ref_32
Das (ref_36) 2021; 39
Lee (ref_58) 2020; 8
Seo (ref_44) 2019; 7
Hong (ref_24) 2012; 12
Muller (ref_66) 2001; 12
Hu (ref_59) 2015; 35
Izgi (ref_23) 2012; 86
Mahmoud (ref_30) 2015; 31
ref_47
Hwang (ref_26) 2018; 20
ref_45
Saleh (ref_53) 2016; 74
ref_42
Ali (ref_6) 2022; 46
ref_1
Hosni (ref_63) 2017; 110
Zhang (ref_14) 2018; 67
ref_3
Wasilewski (ref_38) 2017; 69
He (ref_62) 2012; 12
ref_2
ref_49
ref_48
ref_9
Gungor (ref_31) 2010; 57
ref_5
ref_4
Lee (ref_7) 2021; 15
Mahmoud (ref_35) 2019; 31
References_xml – volume: 55
  start-page: 1195
  year: 2016
  ident: ref_16
  article-title: An overview of energy balance compared to sustainable energy in United Arab Emirates
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.024
– ident: ref_3
  doi: 10.3390/en12030446
– volume: 52
  start-page: 2275
  year: 2004
  ident: ref_68
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830985
– volume: 74
  start-page: 384
  year: 2016
  ident: ref_53
  article-title: A hybrid neuro-fuzzy power prediction system for wind energy generation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.07.039
– volume: 3
  start-page: 2176
  year: 2015
  ident: ref_12
  article-title: Appliance scheduling optimization in smart home networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2496117
– volume: 7
  start-page: 118776
  year: 2019
  ident: ref_44
  article-title: Rewards prediction-based credit assignment for reinforcement learning with sparse binary rewards
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936863
– ident: ref_61
  doi: 10.1109/WCNC.2009.4917961
– ident: ref_64
  doi: 10.1155/2022/1575303
– volume: 17
  start-page: 6825
  year: 2017
  ident: ref_28
  article-title: DeAMON: A decentralized adaptive multi-hop scheduling protocol for 6TiSCH wireless networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2746183
– ident: ref_45
  doi: 10.1002/9781119482260
– ident: ref_47
  doi: 10.1609/aaai.v32i1.11635
– volume: 21
  start-page: 12379
  year: 2020
  ident: ref_43
  article-title: Machine Learning for Advanced Wireless Sensor Networks: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3035846
– ident: ref_9
  doi: 10.3390/app12094786
– volume: 12
  start-page: 181
  year: 2001
  ident: ref_66
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914517
– ident: ref_42
– volume: 57
  start-page: 307
  year: 2011
  ident: ref_25
  article-title: A pilot symbol pattern enabling data recovery without side information in PTS-based OFDM systems
  publication-title: IEEE Trans. Broadcasting
  doi: 10.1109/TBC.2011.2105611
– volume: 278
  start-page: 122808
  year: 2021
  ident: ref_19
  article-title: Stochastic bi-level coordination of active distribution network and renewable-based microgrid considering eco-friendly Compressed Air Energy Storage system and Intelligent Parking Lot
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122808
– volume: 31
  start-page: 960
  year: 2015
  ident: ref_30
  article-title: Optimal distributed generation allocation in distribution systems for loss minimization
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2418333
– volume: 144
  start-page: 361
  year: 2017
  ident: ref_39
  article-title: A combined multivariate model for wind power prediction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.077
– volume: 86
  start-page: 725
  year: 2012
  ident: ref_23
  article-title: Short–mid-term solar power prediction by using artificial neural networks
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.11.013
– ident: ref_48
– ident: ref_1
  doi: 10.3390/electronics7090177
– volume: 74
  start-page: 337
  year: 2015
  ident: ref_29
  article-title: Development of a new temperature data acquisition system for solar energy applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.08.006
– volume: 15
  start-page: 3505
  year: 2021
  ident: ref_7
  article-title: Cooperative decentralized peer-to-peer electricity trading of nanogrid clusters based on predictions of load demand and PV power generation using a gated recurrent unit model
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12195
– volume: 5
  start-page: 749
  year: 2011
  ident: ref_51
  article-title: Next-generation wireless sensor networks infrastructure development for monitoring applications
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.07.099
– volume: 39
  start-page: 1959
  year: 2021
  ident: ref_36
  article-title: Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant
  publication-title: Mater. Today: Proc.
– ident: ref_57
  doi: 10.3390/electronics8020176
– ident: ref_4
  doi: 10.3390/su13126681
– volume: 11
  start-page: 016003
  year: 2013
  ident: ref_67
  article-title: Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/1/016003
– volume: 46
  start-page: 774
  year: 2022
  ident: ref_6
  article-title: Early hotspot detection in photovoltaic modules using color image descriptors: An infrared thermography study
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7201
– ident: ref_2
  doi: 10.3390/en11051122
– ident: ref_11
  doi: 10.1109/ICRERA52334.2021.9598765
– ident: ref_49
  doi: 10.1007/978-3-319-29504-6_20
– volume: 69
  start-page: 177
  year: 2017
  ident: ref_38
  article-title: Short-term electric energy production forecasting at wind power plants in pareto-optimality context
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.026
– ident: ref_34
  doi: 10.3390/en12020215
– volume: 24
  start-page: 103286
  year: 2021
  ident: ref_65
  article-title: Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
  publication-title: Iscience
  doi: 10.1016/j.isci.2021.103286
– ident: ref_27
  doi: 10.1007/978-3-642-17994-5_14
– ident: ref_56
  doi: 10.3390/app10175975
– ident: ref_32
  doi: 10.3390/s17010122
– ident: ref_55
  doi: 10.1109/NAPS.2014.6965389
– volume: 21
  start-page: 916
  year: 2006
  ident: ref_8
  article-title: Defining control strategies for microgrids islanded operation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.873018
– volume: 18
  start-page: 77
  year: 2020
  ident: ref_60
  article-title: Optimal Link Scheduling Based on Attributes of Nodes in 6TiSCH Wireless Networks
  publication-title: J. Korean Inst. Inf. Technol.
– ident: ref_5
  doi: 10.3390/s21165668
– volume: 191
  start-page: 174
  year: 2019
  ident: ref_13
  article-title: Optimal power management for nanogrids based on technical information of electric appliances
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.03.026
– ident: ref_18
  doi: 10.4018/978-1-7998-3222-5.ch009
– volume: 31
  start-page: 2727
  year: 2019
  ident: ref_35
  article-title: Accurate photovoltaic power forecasting models using deep LSTM-RNN
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3225-z
– volume: 20
  start-page: 374
  year: 2018
  ident: ref_26
  article-title: Ferrite position identification system operating with wireless power transfer for intelligent train position detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2797991
– volume: 7
  start-page: 136254
  year: 2019
  ident: ref_41
  article-title: Wind power prediction based on PSO-SVR and grey combination model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942012
– volume: 11
  start-page: 1308
  year: 2011
  ident: ref_33
  article-title: An ANN-based approach for forecasting the power output of photovoltaic system
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2011.12.196
– volume: 269
  start-page: 115098
  year: 2020
  ident: ref_40
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115098
– volume: 12
  start-page: 2380
  year: 2012
  ident: ref_24
  article-title: Spectrum sensing by parallel pairs of cross-correlators and comb filters for OFDM systems with pilot tones
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2188792
– volume: 110
  start-page: 103
  year: 2017
  ident: ref_63
  article-title: Self-healing distributed scheduling for end-to-end delay optimization in multihop wireless networks with 6TiSCh
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.05.014
– volume: 14
  start-page: 2932
  year: 2017
  ident: ref_15
  article-title: Intelligent optimal control with critic learning for a nonlinear overhead crane system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2771256
– volume: 67
  start-page: 5695
  year: 2018
  ident: ref_14
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– volume: 46
  start-page: 169
  year: 2012
  ident: ref_52
  article-title: Condition monitoring of wind turbines: Techniques and methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.003
– ident: ref_54
  doi: 10.1155/2022/7952860
– ident: ref_10
  doi: 10.1109/ICPES53652.2021.9683905
– volume: 7
  start-page: 78063
  year: 2019
  ident: ref_37
  article-title: Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923006
– ident: ref_69
  doi: 10.1109/DSP-SPE.2013.6642587
– volume: 198
  start-page: 111799
  year: 2019
  ident: ref_20
  article-title: A review of deep learning for renewable energy forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111799
– volume: 30
  start-page: 1075
  year: 2005
  ident: ref_22
  article-title: Forecasting based on neural network approach of solar potential in Turkey
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2004.09.020
– volume: 35
  start-page: 127
  year: 2015
  ident: ref_59
  article-title: Intelligent photovoltaic monitoring based on solar irradiance big data and wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2015.07.004
– volume: 8
  start-page: 1201
  year: 2021
  ident: ref_17
  article-title: Blockchain-based Stochastic Energy Management of Interconnected Microgrids Considering Incentive Price
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2021.3059851
– volume: 29
  start-page: 594
  year: 2010
  ident: ref_46
  article-title: An empirical comparison of machine learning models for time series forecasting
  publication-title: Econom. Rev.
  doi: 10.1080/07474938.2010.481556
– volume: 52
  start-page: 2292
  year: 2008
  ident: ref_50
  article-title: Wireless sensor network survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2008.04.002
– volume: 8
  start-page: 24081
  year: 2020
  ident: ref_58
  article-title: Power management by LSTM network for nanogrids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969460
– volume: 12
  start-page: 1931
  year: 2012
  ident: ref_62
  article-title: Energy provisioning in wireless rechargeable sensor networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2012.161
– ident: ref_21
  doi: 10.2172/919131
– volume: 57
  start-page: 3557
  year: 2010
  ident: ref_31
  article-title: Opportunities and challenges of wireless sensor networks in smart grid
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2039455
SSID ssj0000913810
Score 2.3394008
Snippet Photovoltaic (PV) and wind energy are widely considered eco-friendly renewable energy resources. However, due to the unpredictable oscillations in solar and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6908
SubjectTerms Algorithms
Alternative energy sources
Communication
Energy resources
Energy storage
Forecasting
Forecasting techniques
Internet of Things
KRLS technique
Neural networks
power generation uncertainty
prediction accuracy
PV and wind power prediction
regression models
renewable energy
Renewable resources
Scheduling
Sensors
Social research
Wind power
Wireless networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5c3YMeXJ84vuiDB3chmKR7ku6T-BjZwzKIyuIt9FMEmYyTUf--VZmecWDFy16T6hCornfVVwBHXHWd6wqRKGtCIkTJE-VEmRi0ncaXloe2ev73T9nvy_t7dR0Tbk1sq5zqxFZRu9pSjvwkLxTH4BvN-enwOaGtUVRdjSs0vsESIZXhPV867_Wvb2ZZFkK9lFk6GczDwynVhTNaZq1ooeScKWoR-_9RyK2Vufrxv_-3BqvRv2RnkwuxDgt-sAErc6iDG7Ae5blhxxF0-ucmVB99MKwO7JLwdGkVlnfsBoneaMKK9dpBQTZN-TeMsrgMXUiG1mtI5zSjdtonVJ_sFgPkesT6kz7zLbi96t1d_E7i8oXE8kKME42Bly6cpyEPnRWps3mpvc-tUDrPlVfOldoakyl0fDP0M7yR3kovQ7AF59uwOKgHfgeY8Cmnb7QlTmmkEtZwngnvU4nGMO3ArykXKhtxyWk9xlOF8QmxrJpjWQeOZsTDCRzH52TnxM4ZCWFotw_q0UMVRbLKTJAa_WUVnBNOp9JJEbrOmzQIlC_bgf0pp6so2E31webdr1_vwXJOkxJtZ-8-LI5HL_4AvtvX8WMzOoz39B027vOi
  priority: 102
  providerName: ProQuest
Title Management of Distributed Renewable Energy Resources with the Help of a Wireless Sensor Network
URI https://www.proquest.com/docview/2693933392
https://doaj.org/article/1bf8a8009fdd4da08d84f5deb0f4eadc
Volume 12
WOSCitedRecordID wos000831882300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxtBEB9K7IM-FBMVY23YBx-qcHh3u7nbfVSb0EIbgorEp2M_QZBEklT__c7sXfTAQl_6eMfs7TE7Ox-7M78BOOFq6NxQiERZExIhSp4oJ8rEoO00vrQ8xNvzu5_lZCJnMzVttfqinLAaHrhm3HlmgtTo1ajgnHA6lU6KMHTepEEgFyxp37RUrWAq6mCVEXRVXZDHMa6n--CMmlgraiTZMkERqf-dIo7WZbwLnxq3kF3Uv9OFD37eg50WWGAPus02XLGvDVb06R5Ub-krbBHYN4LBpQ5W3rFrJHqhwig2ivV9bHNSv2J0-MrQ82NodJ5onGaUBfuIWo_dYFy7WLJJnR6-Dzfj0e3V96TpmZBYXoh1ojFe0oXzVJuhsyJ1Ni-197kVSue58sq5UltjMoX-aobugTfSW-llCLbg_AA688XcHwITPuX0jXgzKY1UwhrOM-F9KtGGpX042zCxsg2cOHW1eKwwrCCOVy2O9-HklfipRtH4O9klrcYrCUFfxxcoEFUjENW_BKIPx5u1rJr9uKryQnHFcb786H_M8Rm2cyqDiGm7x9BZL3_7L_DRPq8fVssBbF2OJtPrQRRJfJr--DW9_wMETOnM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UraA-tLYqbq06DxVUCOYym8w8FFHb0qXbZbFF6ovDXEUom3WzWvxP_kjPyWW7oPjWB1-Tk5Bkvnxnzh1gL5MD5wacR9KaEHFeZJF0vIgM6k7jC5uFOnr-cVSMx-LiQk7W4FdXC0NplR0n1kTtSks-8tdpLjM0vlGdv5l9i2hqFEVXuxEaDSxO_M8rNNmq_eEBru_zND06PH9_HLVTBSKb5XwRabQodO48VS_oJI-dTQvtfWq51GkqvXSu0NYYtMYTk6AC9UZ4K7wIwebk_kTCX-cE9R6sT4ank09Lnw712BRJ3JQB4qPGFIVOaHS2pPGVK4qvng_wB_3XOu1o8__6Gvdgo907s7cN2LdgzU-34e5KR8Vt2Gq5qmIv2obaL--Dus7xYWVgB9QrmMZ8ecc-oNAVVY-xw7oIknXhjIqRh5rh9pihZp7RdZpRqvAlqgZ2hsZ_OWfjJof-AZzdwEs_hN60nPpHwLiPM7pHHb4VRkhuTZYl3PtYoKKP-_CqW3Nl257rNPrjUqHtRQBRKwDpw95SeNa0Gvm72DsCz1KE-oPXB8r5F9XSjUpMEBptARmc407HwgkeBs6bOHDkDtuH3Q5XqiWtSl2Dauffp5_B7ePz05EaDccnj-FOShUhdQbzLvQW8-_-CdyyPxZfq_nT9g9h8PlmQfgbPUhRfA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UrYg-qK2Ka1udhwoqhOYym8w8iFS3i0vrsliR-uKQuYlQNutmbfGf-fM8J5lsFxTf-uBrMglJ5sv5zv0A7GdyYO2A80ga7SPOiyySlheRRu7UrjCZb6Lnn06KyUScncnpBvzqamEorbKTiY2gtpUhH_lBmssMjW-k8wMf0iKmw9Hr-feIJkhRpLUbp9FC5Nj9vETzrX41HuJeP0vT0dHHt--iMGEgMlnOl1GJ1kWZW0eVDGWSx9akRelcargs01Q6aW1RGq3RMk90gmTqtHBGOOG9yckVisJ_ExVynvZgczp-P_288u9Qv02RxG1JID52TBHphMZoSxpluUaCzayAP6ig4bfR3f_3y9yDO0GnZoftT7AFG262DbfXOi1uw1aQYTV7Hhptv7gP6ir3h1WeDamHMI3_cpZ9wEWXVFXGjpriSNaFOWpGnmuGajNDxp7TdSWjFOJzpAx26mZ1tWCTNrf-AZxew0s_hN6smrlHwLiLM7pHE9YVWkhudJYl3LlYoAIQ9-Flt__KhF7sNBLkXKFNRmBRa2Dpw_5q8bxtQfL3ZW8ISKsl1De8OVAtvqoghlSivSjRRpDeWm7LWFjB_cA6HXuOMsX0YbfDmArCrFZXAHv879NP4SYiT52MJ8c7cCulQpEmsXkXesvFD7cHN8zF8lu9eBJ-FgZfrheDvwHFV1o8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Management+of+Distributed+Renewable+Energy+Resources+with+the+Help+of+a+Wireless+Sensor+Network&rft.jtitle=Applied+sciences&rft.au=Nengroo%2C+Sarvar+Hussain&rft.au=Jin%2C+Hojun&rft.au=Lee%2C+Sangkeum&rft.date=2022-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=14&rft.spage=6908&rft_id=info:doi/10.3390%2Fapp12146908&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12146908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon