A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus
Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 11; H. 4; S. 1742 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2021
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL). |
|---|---|
| AbstractList | Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL). |
| Author | Rodríguez, José-Víctor Woo, Wai Lok Pardo-Quiles, Domingo-Javier Rodríguez-Rodríguez, Ignacio Wei, Bo |
| Author_xml | – sequence: 1 givenname: Ignacio orcidid: 0000-0002-0118-3406 surname: Rodríguez-Rodríguez fullname: Rodríguez-Rodríguez, Ignacio – sequence: 2 givenname: José-Víctor orcidid: 0000-0002-3298-6439 surname: Rodríguez fullname: Rodríguez, José-Víctor – sequence: 3 givenname: Wai Lok orcidid: 0000-0002-8698-7605 surname: Woo fullname: Woo, Wai Lok – sequence: 4 givenname: Bo orcidid: 0000-0002-0781-9655 surname: Wei fullname: Wei, Bo – sequence: 5 givenname: Domingo-Javier orcidid: 0000-0003-3240-2568 surname: Pardo-Quiles fullname: Pardo-Quiles, Domingo-Javier |
| BookMark | eNptkUFvEzEQhS1UJErpiT9giSMKjNf2en2MAimVUoFEOVteezZ1tLEX2znkyi9n06CqqvBlPE_fvBnpvSUXMUUk5D2DT5xr-GyniTEQTInmFblsQLULPncXz_5vyHUpO5ifZrxjcEn-LOkq7SebQ0mRpoGu0dZDRvoTR3Q1zKKNnq5TRmdLDXFL76x7CBHpBm2OJ2E5blMO9WFf6JAy_ZHRB_eI3oxHZ3EfLA2R3h8npIx-CbbHioXe4TiGeijvyOvBjgWv_9Ur8mv99X71bbH5fnO7Wm4WjreiLixXEqVA2QsQ0msQqle-461vnIaOSw-uUcB61fqeK6Fx8NIxhUPTA0jgV-T27OuT3Zkph73NR5NsMI9Cyltjcw1uRIN6aDXz2DHXiQ4bzQWAAwSvW9UyOXt9OHtNOf0-YKlmlw45zuebRnLRgpZKzdTHM-VyKiXj8LSVgTllZp5lNtPsBe1CtacIarZh_O_MX4pMmoo |
| CitedBy_id | crossref_primary_10_1109_JBHI_2022_3175862 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_3390_ijerph181910265 crossref_primary_10_3390_s21134620 crossref_primary_10_1016_j_chemolab_2022_104731 crossref_primary_10_3389_fmed_2024_1425305 crossref_primary_10_1038_s41598_024_70277_x crossref_primary_10_1016_j_bspc_2022_103869 crossref_primary_10_1109_ACCESS_2023_3299332 crossref_primary_10_3390_s23073665 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1177_20552076251355127 crossref_primary_10_2196_47833 crossref_primary_10_3390_app15105652 crossref_primary_10_1177_19322968221092785 crossref_primary_10_51889_2959_5894_2023_83_3_015 |
| Cites_doi | 10.1109/AEEICB.2017.7972337 10.2196/14195 10.2298/YJOR1101119N 10.1089/dia.2009.0031 10.3390/app10124381 10.1007/11430919_60 10.1016/j.asoc.2015.01.035 10.1016/j.ins.2011.12.028 10.3390/s19204482 10.3390/app10228244 10.1016/j.knosys.2019.04.013 10.1109/4235.585893 10.1016/j.neucom.2010.01.017 10.1109/ICASSP.2018.8462413 10.1145/3109761.3158404 10.3390/s19204538 10.1007/3-540-36434-X_2 10.1089/dia.2016.0421 10.1145/3398329.3398356 10.1109/DASA51403.2020.9317124 10.1007/978-3-030-46147-8_35 10.3390/sym11091164 10.1007/978-3-319-25913-0_9 10.1007/978-3-030-05318-5_4 10.1111/pedi.12731 10.1016/j.imu.2018.09.003 10.2337/diaclin.25.1.25 10.1109/TBME.2020.2975959 10.1109/ASCC.2017.8287323 10.1109/ICTTA.2008.4529940 10.1016/j.patcog.2016.11.003 10.1142/S0129065704001899 10.1186/s41601-018-0103-3 10.23919/ACC.2019.8815258 10.1001/jama.289.17.2254 10.14778/3229863.3229878 10.1109/THMS.2015.2453203 10.1016/j.jestch.2020.10.005 10.1007/3-540-57868-4_57 10.1002/sam.11446 10.1002/wics.101 10.1155/2015/265637 10.1007/978-3-642-61564-1_4 10.1016/j.patcog.2005.09.002 10.1080/17446651.2018.1523713 10.3390/s20092625 10.1016/j.neucom.2017.11.077 10.1016/S0004-3702(97)00043-X 10.1109/ICSMC.2008.4811692 10.1007/978-1-4614-6849-3 10.1007/978-3-642-31537-4_13 10.1007/BF00153759 10.1007/978-0-387-09823-4_66 10.1145/2350716.2350742 10.1016/j.inffus.2017.12.003 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11041742 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_e9f691de81c848e293400c0e0d967615 10_3390_app11041742 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-a375e54e5b4045d9047b7d836d2c90835d0c2701b76db3749efd5c17ef2b00503 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632092600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:28:02 EDT 2025 Mon Jun 30 08:06:17 EDT 2025 Sat Nov 29 07:15:49 EST 2025 Tue Nov 18 21:40:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-a375e54e5b4045d9047b7d836d2c90835d0c2701b76db3749efd5c17ef2b00503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0118-3406 0000-0002-3298-6439 0000-0002-0781-9655 0000-0003-3240-2568 0000-0002-8698-7605 |
| OpenAccessLink | https://www.proquest.com/docview/2534609577?pq-origsite=%requestingapplication% |
| PQID | 2534609577 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e9f691de81c848e293400c0e0d967615 proquest_journals_2534609577 crossref_primary_10_3390_app11041742 crossref_citationtrail_10_3390_app11041742 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Sage (ref_23) 2020; 13 Gasca (ref_63) 2006; 39 Westman (ref_5) 2018; 13 ref_12 ref_56 ref_55 ref_53 Kiranmai (ref_59) 2018; 3 ref_52 ref_51 ref_19 ref_17 ref_16 ref_15 Wolpert (ref_42) 1997; 1 Kohavi (ref_11) 1997; 97 Sherr (ref_4) 2018; 19 Novakovic (ref_62) 2011; 21 DeWitt (ref_2) 2003; 289 Fierrez (ref_49) 2018; 44 ref_61 ref_25 ref_69 ref_24 Aha (ref_64) 1991; 6 ref_22 Nguyen (ref_70) 2015; 45 ref_21 ref_65 ref_20 Lang (ref_60) 2019; 178 Chatzigiannakis (ref_33) 2020; 10 ref_29 ref_28 ref_27 ref_26 Crone (ref_36) 2010; 73 Hussain (ref_58) 2018; 9 ref_72 Cai (ref_10) 2018; 300 Sheikhpour (ref_31) 2017; 64 Tomar (ref_13) 2015; 2015 Karegowda (ref_34) 2010; 1 ref_35 ref_32 Guyon (ref_30) 2003; 3 Abdi (ref_66) 2010; 2 ref_39 Fowler (ref_1) 2007; 25 Faloutsos (ref_44) 2018; 11 ref_37 (ref_40) 2012; 34 Xie (ref_18) 2020; 67 Seeger (ref_54) 2004; 14 (ref_41) 2015; 30 ref_47 Liaw (ref_50) 2002; 2 ref_46 Chui (ref_8) 2013; Volume 39 ref_45 ref_43 ref_3 (ref_14) 2018; 2018 ref_48 ref_9 Fonti (ref_38) 2017; 30 Garg (ref_57) 2017; 19 Snijders (ref_68) 1988; Volume 307 Dubosson (ref_71) 2018; 13 ref_7 Bergmeir (ref_67) 2012; 191 Kowalski (ref_6) 2009; 11 |
| References_xml | – ident: ref_32 – ident: ref_24 doi: 10.1109/AEEICB.2017.7972337 – ident: ref_55 doi: 10.2196/14195 – volume: 21 start-page: 119 year: 2011 ident: ref_62 article-title: Toward optimal feature selection using ranking methods and classification algorithms publication-title: Yugosl. J. Oper. Res. doi: 10.2298/YJOR1101119N – volume: 11 start-page: S113 year: 2009 ident: ref_6 article-title: Can We Really Close the Loop and How Soon? Accelerating the Availability of an Artificial Pancreas: A Roadmap to Better Diabetes Outcomes publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2009.0031 – ident: ref_17 doi: 10.3390/app10124381 – ident: ref_35 doi: 10.1007/11430919_60 – volume: 2 start-page: 18 year: 2002 ident: ref_50 article-title: Classification and regression by randomForest publication-title: R News – volume: 30 start-page: 136 year: 2015 ident: ref_41 article-title: Distributed feature selection: An application to microarray data classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.035 – volume: 191 start-page: 192 year: 2012 ident: ref_67 article-title: On the use of cross-validation for time series predictor evaluation publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.12.028 – ident: ref_16 doi: 10.3390/s19204482 – volume: 10 start-page: 8244 year: 2020 ident: ref_33 article-title: Modeling and Forecasting Gender-Based Violence through Machine Learning Techniques publication-title: Appl. Sci. doi: 10.3390/app10228244 – volume: 178 start-page: 48 year: 2019 ident: ref_60 article-title: WekaDeeplearning4j: A deep learning package for Weka based on Deeplearning4j publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.04.013 – volume: 1 start-page: 67 year: 1997 ident: ref_42 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 73 start-page: 1923 year: 2010 ident: ref_36 article-title: Feature selection for time series prediction—A combined filter and wrapper approach for neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.017 – ident: ref_39 doi: 10.1109/ICASSP.2018.8462413 – ident: ref_26 doi: 10.1145/3109761.3158404 – volume: 30 start-page: 1 year: 2017 ident: ref_38 article-title: Feature Selection Using Lasso publication-title: VU Amst. Res. Pap. Bus. Anal. – ident: ref_53 doi: 10.3390/s19204538 – ident: ref_47 doi: 10.1007/3-540-36434-X_2 – volume: 19 start-page: 155 year: 2017 ident: ref_57 article-title: Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2016.0421 – ident: ref_72 doi: 10.1145/3398329.3398356 – ident: ref_29 doi: 10.1109/DASA51403.2020.9317124 – ident: ref_52 doi: 10.1007/978-3-030-46147-8_35 – volume: 2018 start-page: 1 year: 2018 ident: ref_14 article-title: Variables to Be Monitored via Biomedical Sensors for Complete Type 1 Diabetes Mellitus Management: An Extension of the “On-Board” Concept publication-title: J. Diabetes Res. – ident: ref_15 doi: 10.3390/sym11091164 – ident: ref_56 doi: 10.1007/978-3-319-25913-0_9 – ident: ref_61 doi: 10.1007/978-3-030-05318-5_4 – volume: 19 start-page: 302 year: 2018 ident: ref_4 article-title: ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies publication-title: Pediatr. Diabetes doi: 10.1111/pedi.12731 – ident: ref_45 – volume: 13 start-page: 92 year: 2018 ident: ref_71 article-title: The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2018.09.003 – volume: 25 start-page: 25 year: 2007 ident: ref_1 article-title: Diabetes: Magnitude and Mechanisms publication-title: Clin. Diabetes doi: 10.2337/diaclin.25.1.25 – volume: 67 start-page: 3101 year: 2020 ident: ref_18 article-title: Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison with Classical Time-Series Models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.2975959 – ident: ref_20 doi: 10.1109/ASCC.2017.8287323 – ident: ref_9 doi: 10.1109/ICTTA.2008.4529940 – volume: 64 start-page: 141 year: 2017 ident: ref_31 article-title: A Survey on semi-supervised feature selection methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.11.003 – volume: 14 start-page: 69 year: 2004 ident: ref_54 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 3 start-page: 29 year: 2018 ident: ref_59 article-title: Data mining for classification of power quality problems using WEKA and the effect of attributes on classification accuracy publication-title: Prot. Control. Mod. Power Syst. doi: 10.1186/s41601-018-0103-3 – ident: ref_3 – ident: ref_21 doi: 10.23919/ACC.2019.8815258 – volume: 289 start-page: 2254 year: 2003 ident: ref_2 article-title: Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: Scientific review publication-title: JAMA doi: 10.1001/jama.289.17.2254 – volume: 11 start-page: 2102 year: 2018 ident: ref_44 article-title: Forecasting big time series: Old and new publication-title: Proc. VLDB Endow. doi: 10.14778/3229863.3229878 – volume: 45 start-page: 799 year: 2015 ident: ref_70 article-title: Robust Biometric Recognition from Palm Depth Images for Gloved Hands publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2015.2453203 – ident: ref_27 doi: 10.1016/j.jestch.2020.10.005 – ident: ref_65 doi: 10.1007/3-540-57868-4_57 – volume: 13 start-page: 134 year: 2020 ident: ref_23 article-title: Tree aggregation for random forest class probability estimation publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.11446 – ident: ref_37 – volume: 2 start-page: 433 year: 2010 ident: ref_66 article-title: Principal component analysis. Wiley interdisciplinary reviews publication-title: Comput. Stat. doi: 10.1002/wics.101 – volume: 2015 start-page: 1 year: 2015 ident: ref_13 article-title: Hybrid Feature Selection Based Weighted Least Squares Twin Support Vector Machine Approach for Diagnosing Breast Cancer, Hepatitis, and Diabetes publication-title: Adv. Artif. Neural Syst. doi: 10.1155/2015/265637 – volume: Volume 307 start-page: 56 year: 1988 ident: ref_68 article-title: On Cross-Validation for Predictor Evaluation in Time Series publication-title: Lecture Notes in Economics and Mathematical Systems doi: 10.1007/978-3-642-61564-1_4 – volume: 39 start-page: 313 year: 2006 ident: ref_63 article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.09.002 – volume: 13 start-page: 263 year: 2018 ident: ref_5 article-title: Implementing a low-carbohydrate, ketogenic diet to manage type 2 diabetes mellitus publication-title: Expert Rev. Endocrinol. Metab. doi: 10.1080/17446651.2018.1523713 – ident: ref_28 doi: 10.3390/s20092625 – volume: 9 start-page: 447 year: 2018 ident: ref_58 article-title: Educational Data Mining and Analysis of Students’ Academic Performance Using WEKA publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 300 start-page: 70 year: 2018 ident: ref_10 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 97 start-page: 273 year: 1997 ident: ref_11 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – ident: ref_25 – ident: ref_12 doi: 10.1109/ICSMC.2008.4811692 – ident: ref_48 doi: 10.1007/978-1-4614-6849-3 – ident: ref_46 – volume: Volume 39 start-page: 1437 year: 2013 ident: ref_8 article-title: Embedded Real-Time Model Predictive Control for Glucose Regulation publication-title: XXVI Brazilian Congress on Biomedical Engineering – volume: 3 start-page: 1157 year: 2003 ident: ref_30 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 13 year: 2010 ident: ref_34 article-title: Feature Subset Selection Problem using Wrapper Approach in Supervised Learning publication-title: Int. J. Comput. Appl. – ident: ref_51 doi: 10.1007/978-3-642-31537-4_13 – volume: 6 start-page: 37 year: 1991 ident: ref_64 article-title: Instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/BF00153759 – ident: ref_69 doi: 10.1007/978-0-387-09823-4_66 – volume: 34 start-page: 483 year: 2012 ident: ref_40 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. – ident: ref_19 – ident: ref_43 – ident: ref_7 doi: 10.1145/2350716.2350742 – ident: ref_22 – volume: 44 start-page: 57 year: 2018 ident: ref_49 article-title: Multiple classifiers in biometrics. part 1: Fundamentals and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.12.003 |
| SSID | ssj0000913810 |
| Score | 2.285858 |
| Snippet | Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1742 |
| SubjectTerms | Algorithms Datasets Diabetes diabetes mellitus Feature selection Forecasting Forecasting techniques Glucose monitoring Homeostasis Hyperglycemia Hypoglycemia Insulin Machine learning Pancreas Physiology time series forecasting Variables Wearable computers |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEF6K9FAPpVqlT63MwUNbCG42m2z2-BStBxWhLXgL-9M-eOZJklfw6l_uzmZ9vNJCL73kEAay7MzOfMNOvo-Qo0JTH6oKz7yQKuOO-UwJGpJheJba-VAEI2X-pbi-rm9v5c2a1BfOhI30wOPGHTvpK5lbV-em5rUL1SlEnaGOWlmFFjyylwbUs9ZMxRwsc6SuGn_IK0Jfj_fBuKYAwNlvJSgy9f-RiGN1OX9H3iZYCNNxOVvklWu3yeYaWeA22UrHsIdPiSv683vyNIXTlZIgLDwgpFt2Dr5FfZuw6aBaCyjAaVSPI85wFccnHSRm1TuYzu8W3Wz4ed9DQLBw0-HdTTT9On80yt3PFMxawI4VckgjND1cIZXnsOx3yI_zs--nF1mSVchMUfEhU4UoXcldqXnAc1ZSLrSwdVFZZiQiMksNEzTXorK6EFw6b0uTC-eZjvQxu2SjXbTuAwFGK-pZ4SX3itfaq5prVJqgIWua0vEJ-fKy041JnOMofTFvQu-BbmnW3DIhRyvjh5Fq4-9mJ-iylQnyY8cXIWqaFDXNv6JmQg5eHN6kQ9s3rCw48u8Jsfc_vrFP3jAcgIkj3gdkY-iW7iN5bX4Ns747jPH6DGcG7e0 priority: 102 providerName: Directory of Open Access Journals |
| Title | A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus |
| URI | https://www.proquest.com/docview/2534609577 https://doaj.org/article/e9f691de81c848e293400c0e0d967615 |
| Volume | 11 |
| WOSCitedRecordID | wos000632092600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1BygEOLS1UpLTVHHoAJIv1eu21TyitWkAikcWHVE6W9ytESp1iO0hc-eXsbDZpKxAXLpbizGGlmZ15Ozt-j5CTRFLrqgqPrCjqiBtmo1pQlwzdM5XGuiLoKfM_iMkkv7wsytBw68JY5Ton-kStFwp75K9ZmnAkRxPizfX3CFWj8HY1SGjcJ1vIVMYHZOv0fFJ-3HRZkPUyj-nqw7zEne_xXhjX5oA4u1OKPGP_HwnZV5mLnf9d32OyHfAljFYBsUvumWaPPLrFOrhHdsN-7uBFIJ1--YT8GsHZRpIQFhYQGy5bA5-8UI7zHtSNBlTyVHWHs9Iw9nOYBgJF6xRG86lbUf_tqgMHhaFs8RLIm76d_1S1uZrVMGsAj74QQ5jF6WCMnKD9sntKvlycfz57FwV9hkglGe-jOhGpSblJJXfAUBeUCyl0nmSaqQKhnaaKCRpLkWmZCF4Yq1MVC2OZ9Dw0-2TQLBrzjACjGbUssQW3Nc-lrXMuUbKCuvSrUsOH5NXaVZUK5OWooTGv3CEG_Vrd8uuQnGyMr1ecHX83O0Wfb0yQaNu_WLTTKuzbyhQ2K2Jt8ljlPDcOHLmkp6ihusiEQ4NDcrgOhyrs_q66iYWDf__9nDxkOCPjp8APyaBvl-aIPFA_-lnXHodgPvZ9AverfD8uv_4GMbkBBQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aHRJwADZAFAb4MCRAinAcJ44PCJXBWLW2qsSQtlNIHLtU6tKRtKBd-UH8RvxcpwyBuO3AJYfkKQfny3uf7efvA9iNCmpsVeGBETIPuGYmyAW1ydBe40IbWwSdZP5AjEbp8bEcb8CP9iwMtlW2OdEl6nKucI38JYsjjuJoQrw--xKgaxTurrYWGitYHOrzb3bK1rzqv7Xf9ylj---O9g4C7yoQqCjhiyCPRKxjruOCWzpTSspFIco0SkqmJBKSkiomaFiIpCwiwaU2ZaxCoQ0rnHqKfe8V2OQW7GkHNsf94fhkvaqDKptpSFcHAaNIUtyHxrGwxJ_9VvqcQ8AfBcBVtf1b_9t43Iabnj-T3grwW7Chq224cUFVcRu2fL5qyDMvqv38Dnzvkb215SKZG4Lcd1lr8sEZAVl0krwqCTqVqrzBXnAydH2mmngJ2gnpzSZ2BBafTxtiqT4Z17jJ5ULfz85Vrk-nOZlWBKf2JCS-16ghQ9Q8XSybu_DxUkbmHnSqeaXvA2E0oYZFRnKT87QwecoLtOSgtryoWPMuvGihkSkvzo4eIbPMTtIQR9kFHHVhdx18ttIk-XvYG8TYOgSFxN2NeT3JfF7KtDSJDEudhirlqbbkzyZ1RTUtZSIs2-3CTgu_zGe3JvuFvQf_fvwErh0cDQfZoD86fAjXGfYDuY73Hegs6qV-BFfV18W0qR_7H4nAp8vG6k8AR1lu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLbGhhAcgA3QCgN8GBIgRXMcJ44PCJWNQrW1igRI2ykk_tFV6tKRpKBd-bP46_BznTIE4rYDlxySpxxePr8f8fP3IbQblcTYrMICw0URME1NUHBig6G9xqU2Ngk6yvwjPh6nx8ciW0M_urMwMFbZxUQXqNVcwj_yPRpHDMjRON8zfiwiOxi8Pv8SgIIU7LR2chpLiBzqi2-2fWteDQ_st35G6eDtx_33gVcYCGSUsDYoIh7rmOm4ZLa0UYIwXnKVRomiUkBxooiknIQlT1QZcSa0UbEMuTa0dEwq9r3X0IYtyZldYxvZcJSdrP7wAONmGpLlocAoEgT2pMEvtgmgv6VBpxbwRzJwGW5w53_2zV1029fVuL9cCJtoTVdb6NYltsUttOnjWIOfe7LtF_fQ9z7eX0kx4rnBUBMvao0_OIEgi1pcVAqDgqksGpgRxyM3f6qxp6ad4P5sYj3Qnp412LYAOKth88uZvptdyEKfTQs8rTC0_DjEfgapwSPgQm0XzX306Uo88wCtV_NKbyNMSUIMjYxgpmBpaYqUlSDVQWzakbFmPfSyg0kuPWk7aIfMctu8AabyS5jqod2V8fmSq-TvZm8AbysTIBh3N-b1JPfxKtfCJCJUOg1lylJti0Ib7CXRRImE2yq4h3Y6KOY-6jX5Lxw-_Pfjp-iGBWh-NBwfPkI3KYwJuUH4HbTe1gv9GF2XX9tpUz_xawqjz1cN1Z_u2mIu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Feature+Selection+and+Forecasting+Machine+Learning+Algorithms+for+Predicting+Glycaemia+in+Type+1+Diabetes+Mellitus&rft.jtitle=Applied+sciences&rft.au=Rodr%C3%ADguez-Rodr%C3%ADguez%2C+Ignacio&rft.au=Rodr%C3%ADguez%2C+Jos%C3%A9-V%C3%ADctor&rft.au=Woo%2C+Wai+Lok&rft.au=Wei%2C+Bo&rft.date=2021-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=4&rft.spage=1742&rft_id=info:doi/10.3390%2Fapp11041742&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11041742 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |