Optimization on Linkage System for Vehicle Wipers by the Method of Differential Evolution

We consider an optimization problem on the maximal magnitude of angular acceleration of the output-links of a commercially available center-driven linkage system (CDLS) for vehicle wipers on windshield. The purpose of this optimization is to improve the steadiness of a linkage system without weakeni...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 13; číslo 1; s. 332
Hlavní autori: Chen, Tsai-Jung, Hong, Ying-Ji, Lin, Chia-Han, Wang, Jing-Yuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2023
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider an optimization problem on the maximal magnitude of angular acceleration of the output-links of a commercially available center-driven linkage system (CDLS) for vehicle wipers on windshield. The purpose of this optimization is to improve the steadiness of a linkage system without weakening its normal function. Thus this optimization problem is considered under the assumptions that the frame of the fixed links of linkage system is unchanged and that the input-link rotates at the same constant angular speed with its length unchanged. To meet the usual requirements for vehicle wipers on windshield, this optimization problem must be solved subject to 10 specific constraints. We expect that optimizing the maximal magnitude of angular acceleration of the output-links of a linkage system would also be helpful for reducing the amplitudes of sound waves of wiper noise. We establish the motion model of CDLS and then justify this model with ADAMS. We use a “Differential Evolution” type method to search for the minimum of an objective function subject to 10 constraints for this optimization problem. Our optimization computation shows that the maximal magnitude of angular acceleration of both output-links of this linkage system can be reduced by more than 10%.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app13010332