Tube-Based Taut String Algorithms for Total Variation Regularization

Removing noise from signals using total variation regularization is a challenging signal processing problem arising in many practical applications. The taut string method is one of the most efficient approaches for solving the 1D TV regularization problem. In this paper we propose a geometric descri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 8; číslo 7; s. 1141
Hlavní autori: Makovetskii, Artyom, Voronin, Sergei, Kober, Vitaly, Voronin, Aleksei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.07.2020
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Removing noise from signals using total variation regularization is a challenging signal processing problem arising in many practical applications. The taut string method is one of the most efficient approaches for solving the 1D TV regularization problem. In this paper we propose a geometric description of the linearized taut string method. This geometric description leads to the notion of the “tube”. We propose three tube-based taut string algorithms for total variation regularization. Different weight functionals can be used in the 1D TV regularization that lead to different types of tubes. We consider uniform, vertically nonuniform, vertically and horizontally nonuniform tubes. The proposed geometric approach is used to speed-up TV regularization processing by dividing the tubes into subtubes and using parallel processing. We introduce the concept of a relatively convex tube and describe the relationship between the geometric characteristics of tubes and exact solutions to the TV regularization. The properties of exact solutions can also be used to design efficient algorithms for solving the TV regularization problem. The performance of the proposed algorithms is discussed and illustrated by computer simulation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math8071141