The Cădariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of Ω-Hilfer Fractional Differential Equations
Using the Cădariu–Radu method derived from the Diaz–Margolis theorem, we study the existence, uniqueness and Gauss hypergeometric stability of Ω-Hilfer fractional differential equations defined on compact domains. Next, we show the main results for unbounded domains. To illustrate the main result fo...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 9; číslo 12; s. 1408 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.06.2021
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Using the Cădariu–Radu method derived from the Diaz–Margolis theorem, we study the existence, uniqueness and Gauss hypergeometric stability of Ω-Hilfer fractional differential equations defined on compact domains. Next, we show the main results for unbounded domains. To illustrate the main result for a fractional system, we present an example. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math9121408 |