The Cădariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of Ω-Hilfer Fractional Differential Equations

Using the Cădariu–Radu method derived from the Diaz–Margolis theorem, we study the existence, uniqueness and Gauss hypergeometric stability of Ω-Hilfer fractional differential equations defined on compact domains. Next, we show the main results for unbounded domains. To illustrate the main result fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 9; číslo 12; s. 1408
Hlavní autoři: Aderyani, Safoura, Saadati, Reza, Fečkan, Michal
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2021
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using the Cădariu–Radu method derived from the Diaz–Margolis theorem, we study the existence, uniqueness and Gauss hypergeometric stability of Ω-Hilfer fractional differential equations defined on compact domains. Next, we show the main results for unbounded domains. To illustrate the main result for a fractional system, we present an example.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9121408