A Multi-Objective Particle Swarm Optimization Algorithm Based on Gaussian Mutation and an Improved Learning Strategy

Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 7; H. 2; S. 148
Hauptverfasser: Sun, Ying, Gao, Yuelin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 04.02.2019
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. The approach adopts a Gaussian mutation strategy to improve the uniformity of external archives and current populations. To improve the global optimal solution, different learning strategies are proposed for non-dominated and dominated solutions. An indicator is presented to measure the distribution width of the non-dominated solution set, which is produced by various algorithms. Experiments were performed using eight benchmark test functions. The results illustrate that the multi-objective improved PSO algorithm (MOIPSO) yields better convergence and distributions than the other two algorithms, and the distance width indicator is reasonable and effective.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math7020148