A Multi-Objective Particle Swarm Optimization Algorithm Based on Gaussian Mutation and an Improved Learning Strategy
Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. T...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 7; číslo 2; s. 148 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
04.02.2019
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. The approach adopts a Gaussian mutation strategy to improve the uniformity of external archives and current populations. To improve the global optimal solution, different learning strategies are proposed for non-dominated and dominated solutions. An indicator is presented to measure the distribution width of the non-dominated solution set, which is produced by various algorithms. Experiments were performed using eight benchmark test functions. The results illustrate that the multi-objective improved PSO algorithm (MOIPSO) yields better convergence and distributions than the other two algorithms, and the distance width indicator is reasonable and effective. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math7020148 |