A Multi-Objective Particle Swarm Optimization Algorithm Based on Gaussian Mutation and an Improved Learning Strategy

Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 7; číslo 2; s. 148
Hlavní autori: Sun, Ying, Gao, Yuelin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 04.02.2019
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Obtaining high convergence and uniform distributions remains a major challenge in most metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved learning strategy. The approach adopts a Gaussian mutation strategy to improve the uniformity of external archives and current populations. To improve the global optimal solution, different learning strategies are proposed for non-dominated and dominated solutions. An indicator is presented to measure the distribution width of the non-dominated solution set, which is produced by various algorithms. Experiments were performed using eight benchmark test functions. The results illustrate that the multi-objective improved PSO algorithm (MOIPSO) yields better convergence and distributions than the other two algorithms, and the distance width indicator is reasonable and effective.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math7020148