Polynomial Analogue of Gandy’s Fixed Point Theorem

The paper suggests a general method for proving the fact whether a certain set is p-computable or not. The method is based on a polynomial analogue of the classical Gandy’s fixed point theorem. Classical Gandy’s theorem deals with the extension of a predicate through a special operator ΓΦ(x)Ω∗ and s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 9; číslo 17; s. 2102
Hlavní autoři: Goncharov, Sergey, Nechesov, Andrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2021
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper suggests a general method for proving the fact whether a certain set is p-computable or not. The method is based on a polynomial analogue of the classical Gandy’s fixed point theorem. Classical Gandy’s theorem deals with the extension of a predicate through a special operator ΓΦ(x)Ω∗ and states that the smallest fixed point of this operator is a Σ-set. Our work uses a new type of operator which extends predicates so that the smallest fixed point remains a p-computable set. Moreover, if in the classical Gandy’s fixed point theorem, the special Σ-formula Φ(x¯) is used in the construction of the operator, then a new operator uses special generating families of formulas instead of a single formula. This work opens up broad prospects for the application of the polynomial analogue of Gandy’s theorem in the construction of new types of terms and formulas, in the construction of new data types and programs of polynomial computational complexity in Turing complete languages.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9172102