An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis

In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Ga...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing Vol. 10; no. 9; pp. 3383 - 3398
Main Authors: Cuzzocrea, Alfredo, Gaber, Mohamed Medhat, Fadda, Edoardo, Grasso, Giorgio Mario
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects:
ISSN:1868-5137, 1868-5145
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. A relevant case study is also introduced and discussed in detail. We also provide a comprehensive experimental evaluation of the proposed framework, which indeed confirms the benefits of our approach. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts. We complete our analytical contributions by means of concluding remarks of our work, and a vision on future research efforts in the field.
AbstractList In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis. In particular we investigates the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. A relevant case study is also introduced and discussed in detail. We also provide a comprehensive experimental evaluation of the proposed framework, which indeed confirms the benefits of our approach. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts. We complete our analytical contributions by means of concluding remarks of our work, and a vision on future research efforts in the field.
In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. A relevant case study is also introduced and discussed in detail. We also provide a comprehensive experimental evaluation of the proposed framework, which indeed confirms the benefits of our approach. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts. We complete our analytical contributions by means of concluding remarks of our work, and a vision on future research efforts in the field.
Author Gaber, Mohamed Medhat
Fadda, Edoardo
Cuzzocrea, Alfredo
Grasso, Giorgio Mario
Author_xml – sequence: 1
  givenname: Alfredo
  surname: Cuzzocrea
  fullname: Cuzzocrea, Alfredo
  organization: DIA Department, University of Trieste and ICAR-CNR
– sequence: 2
  givenname: Mohamed Medhat
  surname: Gaber
  fullname: Gaber, Mohamed Medhat
  organization: School of Computing Science and Digital Media, Robert Gordon University
– sequence: 3
  givenname: Edoardo
  orcidid: 0000-0002-5599-6349
  surname: Fadda
  fullname: Fadda, Edoardo
  email: edoardo.fadda@polito.it
  organization: ICT for City Logistics and Enterprises Lab., Politecnico di Torino
– sequence: 4
  givenname: Giorgio Mario
  surname: Grasso
  fullname: Grasso, Giorgio Mario
  organization: CSESC Department, University of Messina
BookMark eNp9kM1KxDAYRYMo-DcP4C7gOtovaZp2KeIfCG50HdI2GaOdpObLjPj2dqgoCJpNArnncjmHZDfEYAk5geIMikKdI_BKclZAzYqmqhjskAOoq5pJKOXu91uofbJAfCmmIxoBAAcELwL1IcSNyX5jqUtmZd9jeqUuJorrcYwp-7CkrV9Sk1cRx2ebfEd7kw01wQwf2XdIN97Qblhjnj7DkrUGbU9xnEojy3Y1tZhhjqPHY7LnzIB28XUfkafrq8fLW3b_cHN3eXHPOlGVmQnRGSO5UJaLXomyd6KUDbQ9N2UrRQ-uUpzzunV1Vyqoeldz19imlUoVQklxRE7n3jHFt7XFrF_iOk0jUPMGGlnWZa2mlJpTXYqIyTrd-bwdHnIyftBQ6K1kPUvWk2S9laxhIuEXOSa_MunjX4bPDI5bUzb9bPob-gQNcJJw
CitedBy_id crossref_primary_10_1007_s12652_020_01928_w
crossref_primary_10_1016_j_comcom_2019_11_014
crossref_primary_10_1016_j_tre_2020_102174
crossref_primary_10_3390_e25040597
crossref_primary_10_1109_ACCESS_2020_2982218
crossref_primary_10_1007_s12652_020_01778_6
crossref_primary_10_1007_s00170_020_05850_5
crossref_primary_10_1007_s11042_023_15245_9
crossref_primary_10_3389_fenvs_2021_619092
crossref_primary_10_3390_e24111606
crossref_primary_10_3390_s20092702
Cites_doi 10.1109/5.58325
10.1504/IJBIDM.2009.029076
10.1016/j.renene.2009.08.018
10.1016/0377-0427(87)90125-7
10.1504/IJBPIM.2015.073665
10.3390/s17102302
10.3808/jei.200700091
10.1016/j.eswa.2004.05.015
10.1007/s00382-007-0235-z
10.1021/ac0015063
10.1201/1078/43190.17.1.20000101/31216.9
10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2
10.1016/j.jenvman.2005.06.015
10.1145/2481244.2481246
10.1145/2481244.2481250
10.1016/j.envsoft.2012.09.005
10.1145/1656274.1656278
10.1023/A:1009880716855
10.1002/9780470316801
10.1002/spe.2400
10.5194/acp-14-11883-2014
10.1145/2481244.2481247
10.1111/j.1461-0248.2004.00603.x
10.1002/int.20094
10.3233/ICA-2010-0340
10.1016/S1352-2310(00)00385-X
10.1080/01969727408546059
10.1007/978-3-319-54430-4_51
10.1145/2663715.2669614
10.1145/2513591.2527071
10.1109/COMPSAC.2013.152
10.1145/2666158.2668454
10.1145/2064676.2064695
10.1109/CCGrid.2013.116
10.1109/ICDMW.2008.30
10.1007/978-3-319-11587-0_2
10.1109/CSCWD.2015.7231006
10.1007/978-3-319-46131-1_23
10.1145/2513190.2517828
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-018-0966-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 3398
ExternalDocumentID 10_1007_s12652_018_0966_1
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HCIFZ
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
2VQ
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACSTC
ADKFA
AEBTG
AEZWR
AFDZB
AFFHD
AFHIU
AFLOW
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BSONS
CITATION
H13
HF~
HZ~
O9-
PHGZM
PHGZT
PQGLB
S1Z
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-33caa5237e23d734df34591bd2a4b53d1f672228bf8c4716df82f9e9b57703753
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482438200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-5137
IngestDate Wed Nov 05 03:33:31 EST 2025
Sat Nov 29 03:41:19 EST 2025
Tue Nov 18 22:20:25 EST 2025
Fri Feb 21 02:34:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Big data mining
Big environmental and atmospheric data
Clustering-based spatio-temporal analysis of big data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-33caa5237e23d734df34591bd2a4b53d1f672228bf8c4716df82f9e9b57703753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5599-6349
PQID 2919548487
PQPubID 2043913
PageCount 16
ParticipantIDs proquest_journals_2919548487
crossref_citationtrail_10_1007_s12652_018_0966_1
crossref_primary_10_1007_s12652_018_0966_1
springer_journals_10_1007_s12652_018_0966_1
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yu, Cuzzocrea, Jeong, Maydebura (CR54) 2012; 2012
Kolehmainen, Martikainen, Ruuskanen (CR35) 2001; 35
CR33
CR32
CR30
Mora, Gil, Terol, López, Szymanski (CR44) 2017; 17
Carslaw, Beevers (CR7) 2013; 40
Rousseeuw (CR49) 1987; 20
Bellatreche, Cuzzocrea, Benkrid (CR6) 2010; 2010
CR2
CR3
Chen, Sakaguchi, Frolick (CR8) 2000; 17
Amatriain (CR1) 2012; 14
CR5
Kohonen (CR34) 1990; 78
Phares, Rhoads, Wexler, Kane, Johnston (CR47) 2001; 73
CR9
Lindzen (CR40) 1990; 71
CR46
CR45
Ellison (CR23) 2004; 7
CR42
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR29) 2009; 11
Kaufman, Rousseeuw (CR31) 1990
Cuzzocrea, Darmont, Mahboubi (CR14) 2009; 4
Etchevers, Salaün, Boyer, Coupaye, Palma (CR24) 2017; 47
Laney (CR37) 2001
Li, Shue (CR38) 2004; 27
Dunn (CR21) 1974; 4
Cuzzocrea, Saccà (CR13) 2010; 2010
CR19
CR18
CR17
Martínez-Ballesteros, Lora, Martínez-Álvarez, Riquelme (CR43) 2010; 17
CR16
CR15
Ekasingh, Ngamsomsuke, Letcher, Spate (CR22) 2005; 77
CR11
CR55
CR10
CR53
CR52
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR28) 2009; 11
Kusiak, Zheng, Song (CR36) 2010; 35
Cuzzocrea (CR12) 2015; 7
Gaffney, Robertson, Smyth, Camargo, Ghil (CR26) 2007; 29
Ramakrishnan, Schauer, Chen, Huang, Shafer, Gross (CR48) 2005; 20
Salimi, Ristovski, Mazaheri, Laiman, Crilley, He, Clifford, Morawska (CR50) 2014; 14
Athanasiadis, Mitkas (CR4) 2007; 9
CR27
CR20
Macêdo, Cook, Brown (CR41) 2000; 4
Spate, Gibert, Sànchez-Marrè, Frank, Comas, Athanasiadis, Letcher (CR51) 2006
Fan, Bifet (CR25) 2012; 14
Lin, Ryaboy (CR39) 2012; 14
966_CR20
JC Dunn (966_CR21) 1974; 4
L-D Chen (966_CR8) 2000; 17
966_CR27
A Cuzzocrea (966_CR14) 2009; 4
X Etchevers (966_CR24) 2017; 47
R Ramakrishnan (966_CR48) 2005; 20
966_CR3
966_CR2
M Macêdo (966_CR41) 2000; 4
L Bellatreche (966_CR6) 2010; 2010
DC Carslaw (966_CR7) 2013; 40
M Hall (966_CR28) 2009; 11
P Rousseeuw (966_CR49) 1987; 20
M Martínez-Ballesteros (966_CR43) 2010; 17
SJ Gaffney (966_CR26) 2007; 29
A Cuzzocrea (966_CR13) 2010; 2010
966_CR53
966_CR52
L Kaufman (966_CR31) 1990
966_CR11
966_CR55
966_CR10
966_CR17
966_CR16
966_CR9
966_CR15
966_CR5
966_CR19
T Kohonen (966_CR34) 1990; 78
966_CR18
RS Lindzen (966_CR40) 1990; 71
X Amatriain (966_CR1) 2012; 14
966_CR42
HM Mora (966_CR44) 2017; 17
966_CR46
966_CR45
S Li (966_CR38) 2004; 27
MA Hall (966_CR29) 2009; 11
J Lin (966_CR39) 2012; 14
M Kolehmainen (966_CR35) 2001; 35
B Ekasingh (966_CR22) 2005; 77
F Salimi (966_CR50) 2014; 14
IN Athanasiadis (966_CR4) 2007; 9
D Laney (966_CR37) 2001
966_CR30
W Fan (966_CR25) 2012; 14
966_CR33
966_CR32
AM Ellison (966_CR23) 2004; 7
A Cuzzocrea (966_CR12) 2015; 7
A Kusiak (966_CR36) 2010; 35
B Yu (966_CR54) 2012; 2012
DJ Phares (966_CR47) 2001; 73
J Spate (966_CR51) 2006
References_xml – volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  end-page: 1480
  ident: CR34
  article-title: The self-organizing map
  publication-title: Proc IEEE
  doi: 10.1109/5.58325
– ident: CR45
– volume: 4
  start-page: 301
  issue: 3/4
  year: 2009
  end-page: 328
  ident: CR14
  article-title: Fragmenting very large XML data warehouses via k-means clustering algorithm
  publication-title: IJBIDM
  doi: 10.1504/IJBIDM.2009.029076
– volume: 35
  start-page: 695
  issue: 3
  year: 2010
  end-page: 702
  ident: CR36
  article-title: Power optimization of wind turbines with data mining and evolutionary computation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.08.018
– volume: 20
  start-page: 53
  issue: 1
  year: 1987
  end-page: 65
  ident: CR49
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 2010
  start-page: 89
  year: 2010
  end-page: 104
  ident: CR6
  article-title: F&A: a methodology for effectively and efficiently designing parallel relational data warehouses on heterogenous database clusters
  publication-title: In DAWAK
– ident: CR16
– volume: 7
  start-page: 372
  issue: 4
  year: 2015
  end-page: 377
  ident: CR12
  article-title: Data warehousing and OLAP over big data: a survey of the state-of-the-art, open problems and future challenges
  publication-title: IJBPIM
  doi: 10.1504/IJBPIM.2015.073665
– volume: 17
  start-page: 2302
  issue: 10
  year: 2017
  ident: CR44
  article-title: An iot-based computational framework for healthcare monitoring in mobile environments
  publication-title: Sensors
  doi: 10.3390/s17102302
– volume: 9
  start-page: 100
  issue: 2
  year: 2007
  end-page: 107
  ident: CR4
  article-title: Knowledge discovery for operational decision support in air quality management
  publication-title: J Environ Inf
  doi: 10.3808/jei.200700091
– ident: CR42
– year: 2006
  ident: CR51
  publication-title: Data mining as a tool for environmental scientists
– volume: 27
  start-page: 331
  issue: 3
  year: 2004
  end-page: 340
  ident: CR38
  article-title: Data mining to aid policy making in air pollution management
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.05.015
– volume: 29
  start-page: 423
  issue: 4
  year: 2007
  end-page: 440
  ident: CR26
  article-title: Probabilistic clustering of extratropical cyclones using regression mixture models
  publication-title: Clim Dyn
  doi: 10.1007/s00382-007-0235-z
– ident: CR46
– volume: 73
  start-page: 2338
  issue: 10
  year: 2001
  end-page: 2344
  ident: CR47
  article-title: Application of the art-2a algorithm to laser ablation aerosol mass spectrometry of particle standards
  publication-title: Anal Chem
  doi: 10.1021/ac0015063
– ident: CR19
– volume: 17
  start-page: 1
  issue: 1
  year: 2000
  end-page: 6
  ident: CR8
  article-title: Data mining methods, applications, and tools
  publication-title: Inf Syst Manag
  doi: 10.1201/1078/43190.17.1.20000101/31216.9
– ident: CR15
– volume: 71
  start-page: 288
  issue: 3
  year: 1990
  end-page: 299
  ident: CR40
  article-title: Some coolness concerning global warming
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2
– volume: 77
  start-page: 315
  issue: 4
  year: 2005
  end-page: 325
  ident: CR22
  article-title: A data mining approach to simulating farmers’ crop choices for integrated water resources management
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2005.06.015
– volume: 14
  start-page: 1
  issue: 2
  year: 2012
  end-page: 5
  ident: CR25
  article-title: Mining big data: current status, and forecast to the future
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481246
– volume: 14
  start-page: 37
  issue: 2
  year: 2012
  end-page: 48
  ident: CR1
  article-title: Mining large streams of user data for personalized recommendations
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481250
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR5
– volume: 40
  start-page: 325
  year: 2013
  end-page: 329
  ident: CR7
  article-title: Characterising and understanding emission sources using bivariate polar plots and k-means clustering
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2012.09.005
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: CR28
  article-title: The weka data mining software: an update
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/1656274.1656278
– volume: 4
  start-page: 69
  issue: 1
  year: 2000
  end-page: 80
  ident: CR41
  article-title: Visual data mining in atmospheric science data
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009880716855
– ident: CR18
– year: 1990
  ident: CR31
  publication-title: Finding groups in data: an introduction to cluster analysis
  doi: 10.1002/9780470316801
– ident: CR2
– ident: CR53
– ident: CR30
– volume: 47
  start-page: 3
  issue: 1
  year: 2017
  end-page: 20
  ident: CR24
  article-title: Reliable self-deployment of distributed cloud applications
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2400
– ident: CR10
– ident: CR33
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: CR29
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– year: 2001
  ident: CR37
  publication-title: 3D data management: Controlling data volume, velocity, and variety
– ident: CR27
– volume: 14
  start-page: 11883
  issue: 1
  year: 2014
  end-page: 11892
  ident: CR50
  article-title: Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-11883-2014
– volume: 14
  start-page: 6
  issue: 2
  year: 2012
  end-page: 19
  ident: CR39
  article-title: Scaling big data mining infrastructure: the twitter experience
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481247
– volume: 7
  start-page: 509
  issue: 6
  year: 2004
  end-page: 520
  ident: CR23
  article-title: Bayesian inference in ecology
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00603.x
– volume: 20
  start-page: 759
  issue: 7
  year: 2005
  end-page: 787
  ident: CR48
  article-title: The EDAM project: mining atmospheric aerosol datasets
  publication-title: Int J Intell Syst
  doi: 10.1002/int.20094
– volume: 17
  start-page: 227
  issue: 3
  year: 2010
  end-page: 242
  ident: CR43
  article-title: Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution
  publication-title: Integr Comput Aid Eng
  doi: 10.3233/ICA-2010-0340
– volume: 2010
  start-page: 93
  year: 2010
  end-page: 98
  ident: CR13
  article-title: Balancing accuracy and privacy of OLAP aggregations on data cubes
  publication-title: In ACM DOLAP
– volume: 35
  start-page: 815
  issue: 5
  year: 2001
  end-page: 825
  ident: CR35
  article-title: Neural networks and periodic components used in air quality forecasting
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(00)00385-X
– ident: CR3
– ident: CR52
– ident: CR17
– ident: CR55
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: CR21
  article-title: Well separated clusters and optimal fuzzy-partitions
  publication-title: J Cybern
  doi: 10.1080/01969727408546059
– volume: 2012
  start-page: 918
  year: 2012
  end-page: 922
  ident: CR54
  article-title: On managing very large sensor-network data using bigtable
  publication-title: In IEEE/ACM CCGrid
– ident: CR20
– volume: 14
  start-page: 11883
  issue: 1
  year: 2014
  ident: 966_CR50
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-11883-2014
– volume: 2010
  start-page: 89
  year: 2010
  ident: 966_CR6
  publication-title: In DAWAK
– volume: 17
  start-page: 1
  issue: 1
  year: 2000
  ident: 966_CR8
  publication-title: Inf Syst Manag
  doi: 10.1201/1078/43190.17.1.20000101/31216.9
– volume: 2010
  start-page: 93
  year: 2010
  ident: 966_CR13
  publication-title: In ACM DOLAP
– ident: 966_CR45
  doi: 10.1007/978-3-319-54430-4_51
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 1990
  ident: 966_CR31
  doi: 10.1002/9780470316801
– ident: 966_CR42
– ident: 966_CR11
  doi: 10.1145/2663715.2669614
– ident: 966_CR32
– volume: 4
  start-page: 301
  issue: 3/4
  year: 2009
  ident: 966_CR14
  publication-title: IJBIDM
  doi: 10.1504/IJBIDM.2009.029076
– volume-title: 3D data management: Controlling data volume, velocity, and variety
  year: 2001
  ident: 966_CR37
– ident: 966_CR3
– ident: 966_CR18
  doi: 10.1145/2513591.2527071
– ident: 966_CR55
– volume-title: Data mining as a tool for environmental scientists
  year: 2006
  ident: 966_CR51
– ident: 966_CR9
  doi: 10.1109/COMPSAC.2013.152
– volume: 14
  start-page: 37
  issue: 2
  year: 2012
  ident: 966_CR1
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481250
– volume: 17
  start-page: 2302
  issue: 10
  year: 2017
  ident: 966_CR44
  publication-title: Sensors
  doi: 10.3390/s17102302
– ident: 966_CR19
  doi: 10.1145/2666158.2668454
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 966_CR29
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– volume: 73
  start-page: 2338
  issue: 10
  year: 2001
  ident: 966_CR47
  publication-title: Anal Chem
  doi: 10.1021/ac0015063
– ident: 966_CR2
– volume: 9
  start-page: 100
  issue: 2
  year: 2007
  ident: 966_CR4
  publication-title: J Environ Inf
  doi: 10.3808/jei.200700091
– ident: 966_CR20
  doi: 10.1145/2064676.2064695
– volume: 27
  start-page: 331
  issue: 3
  year: 2004
  ident: 966_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.05.015
– volume: 35
  start-page: 695
  issue: 3
  year: 2010
  ident: 966_CR36
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.08.018
– ident: 966_CR52
– ident: 966_CR16
  doi: 10.1109/CCGrid.2013.116
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 966_CR28
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/1656274.1656278
– volume: 14
  start-page: 1
  issue: 2
  year: 2012
  ident: 966_CR25
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481246
– ident: 966_CR27
  doi: 10.1109/ICDMW.2008.30
– ident: 966_CR10
  doi: 10.1007/978-3-319-11587-0_2
– volume: 20
  start-page: 53
  issue: 1
  year: 1987
  ident: 966_CR49
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 966_CR34
  publication-title: Proc IEEE
  doi: 10.1109/5.58325
– volume: 35
  start-page: 815
  issue: 5
  year: 2001
  ident: 966_CR35
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(00)00385-X
– volume: 14
  start-page: 6
  issue: 2
  year: 2012
  ident: 966_CR39
  publication-title: SIGKDD Explor
  doi: 10.1145/2481244.2481247
– ident: 966_CR5
– volume: 40
  start-page: 325
  year: 2013
  ident: 966_CR7
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2012.09.005
– ident: 966_CR30
– volume: 7
  start-page: 509
  issue: 6
  year: 2004
  ident: 966_CR23
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00603.x
– ident: 966_CR53
– ident: 966_CR17
  doi: 10.1109/CSCWD.2015.7231006
– volume: 17
  start-page: 227
  issue: 3
  year: 2010
  ident: 966_CR43
  publication-title: Integr Comput Aid Eng
  doi: 10.3233/ICA-2010-0340
– ident: 966_CR46
  doi: 10.1007/978-3-319-46131-1_23
– volume: 47
  start-page: 3
  issue: 1
  year: 2017
  ident: 966_CR24
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2400
– volume: 29
  start-page: 423
  issue: 4
  year: 2007
  ident: 966_CR26
  publication-title: Clim Dyn
  doi: 10.1007/s00382-007-0235-z
– volume: 4
  start-page: 69
  issue: 1
  year: 2000
  ident: 966_CR41
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009880716855
– volume: 77
  start-page: 315
  issue: 4
  year: 2005
  ident: 966_CR22
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2005.06.015
– volume: 71
  start-page: 288
  issue: 3
  year: 1990
  ident: 966_CR40
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2
– ident: 966_CR33
– ident: 966_CR15
  doi: 10.1145/2513190.2517828
– volume: 7
  start-page: 372
  issue: 4
  year: 2015
  ident: 966_CR12
  publication-title: IJBPIM
  doi: 10.1504/IJBPIM.2015.073665
– volume: 4
  start-page: 95
  year: 1974
  ident: 966_CR21
  publication-title: J Cybern
  doi: 10.1080/01969727408546059
– volume: 2012
  start-page: 918
  year: 2012
  ident: 966_CR54
  publication-title: In IEEE/ACM CCGrid
– volume: 20
  start-page: 759
  issue: 7
  year: 2005
  ident: 966_CR48
  publication-title: Int J Intell Syst
  doi: 10.1002/int.20094
SSID ssj0000393111
Score 2.2280757
Snippet In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data...
In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3383
SubjectTerms Artificial Intelligence
Atmospheric models
Axioms
Big Data
Clustering
Computational Intelligence
Data analysis
Data mining
Decision making
Emissions
Engineering
Greenhouse gases
Mathematical analysis
Original Research
Robotics and Automation
Sensors
Smart cities
Spatial analysis
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dS8MwEMCDTB_0wW9xOiUPPimBNknb5XGIwwcZgh_sreRTCnOOpdvfb65rNxUV9LnXUC5J7y53-R1CF0YHm0yNIlZJTrh0EZHURkRkEmArCWe6mum7bDDoDofivr7H7Ztq9yYlWf2pV5fdaJpAGQGk69OUhJBnPQHYDIToD8_LgxW4bBpXfXeBBE-SmGVNNvO7UT7bo5WT-SUvWpmb_s6_PnQXbdfeJe4tlsMeWrPjfbT1gTl4gHxvjIu6FercYtcUZ-HgvWI_m4A_HgSxKl6wLF_fPHAHCo2hlBRLQJgA2BnPC4n1aAaYhSBNwBga7KvybFLjrkYLcV_4Q_TUv3m8viV15wWiWcpLwpiWMoSomaXMZIwbx3giYmWo5CphJnZpBkdHynV1sG6pcV3qhBUqyTJoqsuOUGv8NrbHCMvIWh2iSKOM5rEVXc5sJJRzlErBnW6jqNF_rmssOXTHGOUroDLoMw_6zEGfedxGl8tXJgsmx2_CnWZS83p7-pyKCnQXgrU2umomcfX4x8FO_iR9ijaDe1VXpHVQq5zO7Bna0POy8NPzatW-A6Hp6GE
  priority: 102
  providerName: Springer Nature
Title An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis
URI https://link.springer.com/article/10.1007/s12652-018-0966-1
https://www.proquest.com/docview/2919548487
Volume 10
WOSCitedRecordID wos000482438200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZY4MCFhwBRXvKBE8jaxHbi-oQAgTigquKxQnuJ_ESRSltw29-PJ3WoFgkue_EljmXlczzjmfH3IXRiTbTJ1GritOKEK58RRV1GpFBAtlJwZhqk70Sv131-lv0UcAuprLLdE5uN2o4MxMh_U9lwk0X_-nz8RkA1CrKrSULjF1rJadyEISkryGeMBe6d5o0EL5DCkyJnok1sNrfnaFlAXQLk_8uS5P-apoW_-SVF2liem43_nfMmWk8-J76YL5IttOSG2yhcDHGdJFFnDvu2SAtHLxaH6Rj88jgdrOsXrCavowD8A7XBUFKKFVCZAMEzntUKm8EU6BZibwJG0eLQlGmTRHs1mHcPddhBTzfXj1e3JCkwEMNKPiGMGaXiUVU4yqxg3HrGC5lrSxXXBbO5LwWEkLTvmmjlSuu71EsndSEEiOuyXbQ8HA3dHsIqc87E06TV1vDcyS5nLpPae0qV5N50UNZ-_MokenJQyRhUC2JlwKuKeFWAV5V30OnnK-M5N8dPnQ9bjKr0m4ZqAVAHnbUoLx5_O9j-z4MdoLXoV6VStEO0PHmfuiO0amaTOrwfo5XL617__rhZq7HtF39je__w5wMxyPH7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThsxFL2ioVLZ9KG2aihtvYANldUZ2zMTLxCiLQhEGqGKSuymflYjhSTgJFV_im_EdzJDVCTYsWA9Hku2j-_Dvj4HYNOa6JOZ1dRpJahQPqGKuYTKQiHZSia4qVe6XwwGvbMzebICV-1bGCyrbG1ibajt2OAZ-Rcma26yGF_vTi4oqkbh7WorobGAxbH79zembGHn6Htc3y3GDvZPvx3SRlWAGp6LKeXcKBXTr8IxbgsurOcik6m2TAmdcZv6vMBjEe17Jlru3Poe89JJnRUFCsby2O8TWBVc5FkHVr_uD05-3pzq4EvXtBb9RRp6mqW8aK9S6_d6LM-wEgIrDvKcpv87w2WEe-tStvZ1By8e2yy9hOdNVE32FtvgFay40WsIeyNSNaKvc0d8W4ZGYpxOwmyCmUccPtHVH6Km5-OADAuVIVg0SxSStSCFNZlXipjhDAklYmuKbt-SUBei04bYa7hoHqrwBn49yDjfQmc0Hrl3QFTinIn5stXWiNTJnuAukdp7xpQU3nQhaRe7NA0BO-qADMsldTTio4z4KBEfZdqF7ZtfJgv2kfsab7SYKBtDFMolILrwuUXV8vOdna3f39kneHZ4-qNf9o8Gx-9hLUaRTeHdBnSmlzP3AZ6a-bQKlx-bHULg90PD7Rpw1ksA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYmNiH2MMaPaYWy-WFPIKuJ7ST1IwKqTUMVYoD6FvknitSlFU779-NLkxYQICGec7Ein6O78333fQj9MjrEZGoUsUpywqWLiKQ2IiKTQLaScKZrT59nw2F_NBIXjc6pb9HubUtyMdMALE1l1Zsa11sNvtE0AUgBtO7TlITy5yMPhQxgui7_3SwvWWDwNK41eIEVniQxy9rO5nOrPI5Nq4TzSY-0Dj2DzXd_9Ff0pck68fHimGyhD7bcRp8fcBHuIH9c4qKRSJ1b7FrQFg5ZLfazKeTpwRCr4hbL6v_EAx9BoTFATLEEahMgfMbzQmI9ngH9QrAmECQN9jVsmzQ0WOOFuS_8LroenF2d_CaNIgPRLOUVYUxLGUrXzFJmMsaNYzwRsTJUcpUwE7s0gysl5fo6RL3UuD51wgqVZBmI7bJvaK2clPY7wjKyVofq0iijeWxFnzMbCeUcpVJwpzsoan2R64auHFQzxvmKaBn2Mw_7mcN-5nEHHS5fmS64Ol4z7rYOzpvf1udU1AR4oYjroKPWoavHLy629ybrn2j94nSQn_8Z_t1HGyEDa0BrXbRW3c3sAfqk51Xh737Uh_ke3ln0KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+framework+for+supporting+big+atmospheric+data+analytics+via+clustering-based+spatio-temporal+analysis&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Cuzzocrea%2C+Alfredo&rft.au=Gaber%2C+Mohamed+Medhat&rft.au=Fadda%2C+Edoardo&rft.au=Grasso%2C+Giorgio+Mario&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=10&rft.issue=9&rft.spage=3383&rft.epage=3398&rft_id=info:doi/10.1007%2Fs12652-018-0966-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon