An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis
In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Ga...
Uložené v:
| Vydané v: | Journal of ambient intelligence and humanized computing Ročník 10; číslo 9; s. 3383 - 3398 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1868-5137, 1868-5145 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over
big atmospheric data
via
clustering-based spatio-temporal analysis
. In particular we investigates the interesting applicative setting represented by
Greenhouse Gas Emissions
(GGEs), a relevant instance of
Big Data
that empathize the
Variety
aspect of the well-known
3V
Big Data axioms. A relevant case study is also introduced and discussed in detail. We also provide a comprehensive experimental evaluation of the proposed framework, which indeed confirms the benefits of our approach. The deriving
Big Data Mining model
turns to be useful for decision support processes in both the governmental and industrial contexts. We complete our analytical contributions by means of concluding remarks of our work, and a vision on future research efforts in the field. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1868-5137 1868-5145 |
| DOI: | 10.1007/s12652-018-0966-1 |