An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis

In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Ga...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of ambient intelligence and humanized computing Ročník 10; číslo 9; s. 3383 - 3398
Hlavní autori: Cuzzocrea, Alfredo, Gaber, Mohamed Medhat, Fadda, Edoardo, Grasso, Giorgio Mario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Predmet:
ISSN:1868-5137, 1868-5145
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we provide principles, models, and main architecture of an innovative framework for supporting intelligent analytics over big atmospheric data via clustering-based spatio-temporal analysis . In particular we investigates the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. A relevant case study is also introduced and discussed in detail. We also provide a comprehensive experimental evaluation of the proposed framework, which indeed confirms the benefits of our approach. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts. We complete our analytical contributions by means of concluding remarks of our work, and a vision on future research efforts in the field.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-018-0966-1