On Coding by (2,q)-Distance Fibonacci Numbers

In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 8; H. 11; S. 2058
Hauptverfasser: Matoušová, Ivana, Trojovský, Pavel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2020
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Włoch et al. studied (2,q)-distance Fibonacci numbers F2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (Tq(n))n=−∞∞, which is an extension of Włoch’s sequence (F2(q,n))n=0∞.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math8112058