On Coding by (2,q)-Distance Fibonacci Numbers

In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 8; číslo 11; s. 2058
Hlavní autoři: Matoušová, Ivana, Trojovský, Pavel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2020
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Włoch et al. studied (2,q)-distance Fibonacci numbers F2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (Tq(n))n=−∞∞, which is an extension of Włoch’s sequence (F2(q,n))n=0∞.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math8112058