On Coding by (2,q)-Distance Fibonacci Numbers
In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 8; číslo 11; s. 2058 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2020
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Włoch et al. studied (2,q)-distance Fibonacci numbers F2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (Tq(n))n=−∞∞, which is an extension of Włoch’s sequence (F2(q,n))n=0∞. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math8112058 |