A Comparison of Discrete Schemes for Numerical Solution of Parabolic Problems with Fractional Power Elliptic Operators

The main aim of this article is to analyze the efficiency of general solvers for parabolic problems with fractional power elliptic operators. Such discrete schemes can be used in the cases of non-constant elliptic operators, non-uniform space meshes and general space domains. The stability results a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 9; číslo 12; s. 1344
Hlavní autoři: Čiegis, Raimondas, Čiegis, Remigijus, Dapšys, Ignas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2021
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main aim of this article is to analyze the efficiency of general solvers for parabolic problems with fractional power elliptic operators. Such discrete schemes can be used in the cases of non-constant elliptic operators, non-uniform space meshes and general space domains. The stability results are proved for all algorithms and the accuracy of obtained approximations is estimated by solving well-known test problems. A modification of the second order splitting scheme is presented, it combines the splitting method to solve locally the nonlinear subproblem and the AAA algorithm to solve the nonlocal diffusion subproblem. Results of computational experiments are presented and analyzed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9121344