A Comparison of Discrete Schemes for Numerical Solution of Parabolic Problems with Fractional Power Elliptic Operators

The main aim of this article is to analyze the efficiency of general solvers for parabolic problems with fractional power elliptic operators. Such discrete schemes can be used in the cases of non-constant elliptic operators, non-uniform space meshes and general space domains. The stability results a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 9; číslo 12; s. 1344
Hlavní autori: Čiegis, Raimondas, Čiegis, Remigijus, Dapšys, Ignas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.06.2021
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The main aim of this article is to analyze the efficiency of general solvers for parabolic problems with fractional power elliptic operators. Such discrete schemes can be used in the cases of non-constant elliptic operators, non-uniform space meshes and general space domains. The stability results are proved for all algorithms and the accuracy of obtained approximations is estimated by solving well-known test problems. A modification of the second order splitting scheme is presented, it combines the splitting method to solve locally the nonlinear subproblem and the AAA algorithm to solve the nonlocal diffusion subproblem. Results of computational experiments are presented and analyzed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9121344