Generative hybrid models for fraud detection in auto insurance with a comparative analysis of VAE, GAN, and diffusion approaches

Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions, and the necessity for explicable predictions. While traditional Machine Learning (ML) approaches show promise, they frequently struggle from poor genera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discover Artificial Intelligence Ročník 5; číslo 1; s. 313 - 23
Hlavní autoři: Bekkaye, Chadia, Oukhouya, Hassan, Zari, Tarek, Guerbaz, Raby, El Bouanani, Hicham
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Springer
Témata:
ISSN:2731-0809, 2731-0809
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions, and the necessity for explicable predictions. While traditional Machine Learning (ML) approaches show promise, they frequently struggle from poor generalization, limited interpretability, and inadequate treatment of rare fraudulent cases. The present paper proposes a new hybrid approach involving generative models —namely Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion Models (DMs)—with an ensemble of classifiers including eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting (Light GBM), coupled with Isolation Forest (IF) for anomaly detection and oversampling-based techniques (SMOTE and ADASYN) to ameliorate class balance. In total, 18 hybrid combinations were developed and evaluated across classification performance (AUC-ROC, Accuracy, Precision, Recall, F1-score), probabilistic calibration (Brier Score and Log loss), and stochastic stability (Monte Carlo Variance and Bootstrap Variance). The experimental findings—backed up by graphical analysis based on radar plots, ROC curves, 3D metric visualization, and SHAP explainability—confirm that DM coupled with XGBoost and SMOTE (DM_XGBoost_SMOTE) and DM with Light GBM and SMOTE (DM_Light GBM_SMOTE) outperform alternative combinations. In particular, DM_XGBoost_SMOTE achieves a well balanced compromise between accuracy, confidence calibration, and robustness. This work underlines the efficiency of Diffusion-based hybrid models in fraud detection and opens the way for their implementation in high-risk, real-world insurance environments.
AbstractList Abstract Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions, and the necessity for explicable predictions. While traditional Machine Learning (ML) approaches show promise, they frequently struggle from poor generalization, limited interpretability, and inadequate treatment of rare fraudulent cases. The present paper proposes a new hybrid approach involving generative models —namely Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion Models (DMs)—with an ensemble of classifiers including eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting (Light GBM), coupled with Isolation Forest (IF) for anomaly detection and oversampling-based techniques (SMOTE and ADASYN) to ameliorate class balance. In total, 18 hybrid combinations were developed and evaluated across classification performance (AUC-ROC, Accuracy, Precision, Recall, F1-score), probabilistic calibration (Brier Score and Log loss), and stochastic stability (Monte Carlo Variance and Bootstrap Variance). The experimental findings—backed up by graphical analysis based on radar plots, ROC curves, 3D metric visualization, and SHAP explainability—confirm that DM coupled with XGBoost and SMOTE (DM_XGBoost_SMOTE) and DM with Light GBM and SMOTE (DM_Light GBM_SMOTE) outperform alternative combinations. In particular, DM_XGBoost_SMOTE achieves a well balanced compromise between accuracy, confidence calibration, and robustness. This work underlines the efficiency of Diffusion-based hybrid models in fraud detection and opens the way for their implementation in high-risk, real-world insurance environments.
Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions, and the necessity for explicable predictions. While traditional Machine Learning (ML) approaches show promise, they frequently struggle from poor generalization, limited interpretability, and inadequate treatment of rare fraudulent cases. The present paper proposes a new hybrid approach involving generative models —namely Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion Models (DMs)—with an ensemble of classifiers including eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting (Light GBM), coupled with Isolation Forest (IF) for anomaly detection and oversampling-based techniques (SMOTE and ADASYN) to ameliorate class balance. In total, 18 hybrid combinations were developed and evaluated across classification performance (AUC-ROC, Accuracy, Precision, Recall, F1-score), probabilistic calibration (Brier Score and Log loss), and stochastic stability (Monte Carlo Variance and Bootstrap Variance). The experimental findings—backed up by graphical analysis based on radar plots, ROC curves, 3D metric visualization, and SHAP explainability—confirm that DM coupled with XGBoost and SMOTE (DM_XGBoost_SMOTE) and DM with Light GBM and SMOTE (DM_Light GBM_SMOTE) outperform alternative combinations. In particular, DM_XGBoost_SMOTE achieves a well balanced compromise between accuracy, confidence calibration, and robustness. This work underlines the efficiency of Diffusion-based hybrid models in fraud detection and opens the way for their implementation in high-risk, real-world insurance environments.
ArticleNumber 313
Author El Bouanani, Hicham
Zari, Tarek
Guerbaz, Raby
Bekkaye, Chadia
Oukhouya, Hassan
Author_xml – sequence: 1
  givenname: Chadia
  orcidid: 0009-0009-9610-8000
  surname: Bekkaye
  fullname: Bekkaye, Chadia
  email: chadiabek2024@gmail.com
  organization: MAEGE Laboratory, Department of Statistics and Applied Mathematics, Hassan II University
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0002-5058-2008
  surname: Oukhouya
  fullname: Oukhouya, Hassan
  email: oukhouya.hassan@ump.ac.ma
  organization: MAEGE Laboratory, Department of Statistics and Applied Mathematics, Hassan II University, LaMSD, Team of MSASE, Department of Economics, Mohammed First University
– sequence: 3
  givenname: Tarek
  orcidid: 0000-0002-3549-128X
  surname: Zari
  fullname: Zari, Tarek
  organization: MAEGE Laboratory, Department of Statistics and Applied Mathematics, Hassan II University
– sequence: 4
  givenname: Raby
  orcidid: 0009-0009-7303-6008
  surname: Guerbaz
  fullname: Guerbaz, Raby
  organization: MAEGE Laboratory, Department of Statistics and Applied Mathematics, Hassan II University
– sequence: 5
  givenname: Hicham
  orcidid: 0009-0002-5211-9831
  surname: El Bouanani
  fullname: El Bouanani, Hicham
  organization: MAEGE Laboratory, Department of Statistics and Applied Mathematics, Hassan II University
BookMark eNp9kU9v1DAQxSNUJErpF-BkiWsD43-xc1xVZalUwQW4WpN43PVqN17sBLS3fnTcbgWcOM1o9N5v9PReN2dTmqhp3nJ4zwHMh6IU72QLQrcA2qhWv2jOhZG8BQv92T_7q-aylC0ACKuN7OG8eVjTRBnn-JPY5jjk6Nk-edoVFlJmIePimaeZxjmmicWJ4TKnOsuScRqJ_YrzhiEb0_6AzxiccHcssbAU2PfVzRVbrz5f1WsFxRCW8gjCwyEnHDdU3jQvA-4KXT7Pi-bbx5uv15_auy_r2-vVXTvKTukWgwxgQk9DJwSOveq7YAYjAu_RDkpr9Nb3XqmRE3rTGVQCyEgPYQBrSF40tyeuT7h1hxz3mI8uYXRPh5TvHeY5jjtyyMlapTkHKRSRtjYICNDzQXA0na2sdydWDfFjoTK7bVpyjV2cFF0PRlndVZU4qcacSskU_nzl4B6Lc6fiXC3OPRXndDXJk6lU8XRP-S_6P67fuTqcvg
Cites_doi 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1007/978-3-030-66665-1_17
10.1109/ICDM.2008.17
10.1023/A:1010933404324
10.1016/j.asoc.2015.07.018
10.1016/j.dss.2017.11.001
10.6339/JDS.201207_10(3).0010
10.1145/2939672.2939785
10.1155/2021/6033860
10.7717/peerj-cs.2088
10.5391/IJFIS.2024.24.4.333
10.1088/2631-8695/ad5d51
10.1007/s11831-025-10271-2
10.1109/ACCESS.2020.2983300
10.1007/978-1-4899-4541-9
10.1007/978-3-319-98074-4
10.1007/978-3-030-96302-6_5
10.1109/TII.2024.3366991
10.14569/IJACSA.2020.0111054
10.1007/978-1-4757-4145-2
10.3390/a15050139
10.1109/IJCNN.2008.4633969
10.1111/jori.12359
10.1007/s10115-025-02377-7
10.1109/ACCESS.2024.3468993
10.1371/journal.pone.0325900
10.1016/j.ipm.2009.03.002
10.19139/soic-2310-5070-2655
10.1613/jair.953
10.1609/aaai.v30i1.9825
10.1016/j.ribaf.2022.101744
10.1111/1539-6975.00023
10.3390/math12020295
10.1109/TKDE.2004.1277822
10.11591/ijece.v14i1.pp911-921
10.1016/j.eswa.2005.04.030
10.3390/math11163605
10.1016/j.patrec.2005.10.010
10.1016/j.eswa.2020.114463
10.1080/17686733.2024.2349976
10.1088/2631-8695/ad76f9
10.1016/j.eswa.2023.120644
10.1186/s12859-023-05443-5
10.1016/S0957-4174(97)00045-6
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1007/s44163-025-00574-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2731-0809
EndPage 23
ExternalDocumentID oai_doaj_org_article_a1e8845110324ee588f20f091b21a768
10_1007_s44163_025_00574_5
GroupedDBID 0R~
8G5
AAJSJ
AAKKN
AASML
ABEEZ
ABUWG
ACACY
ACULB
ACVER
AFFHD
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BENPR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
IAO
ICD
ITC
M2O
M~E
OK1
PHGZM
PHGZT
PIMPY
SOJ
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3645-af3f07f9eb622ac9496f7b72f19a8b455ad8d9d44c1ead767a420e73d0fb087e3
IEDL.DBID C24
ISSN 2731-0809
IngestDate Mon Nov 10 19:22:51 EST 2025
Thu Nov 06 15:00:18 EST 2025
Thu Nov 13 04:29:53 EST 2025
Thu Nov 06 11:44:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classification metrics
Isolation forest
Performance comparison
Oversampling methods
Probabilistic calibration
Auto insurance
Machine leaning algorithms
Fraud detection
Model stability
Generative hybrid models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3645-af3f07f9eb622ac9496f7b72f19a8b455ad8d9d44c1ead767a420e73d0fb087e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5058-2008
0009-0009-9610-8000
0009-0009-7303-6008
0009-0002-5211-9831
0000-0002-3549-128X
OpenAccessLink https://link.springer.com/10.1007/s44163-025-00574-5
PQID 3269074856
PQPubID 5642945
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_a1e8845110324ee588f20f091b21a768
proquest_journals_3269074856
crossref_primary_10_1007_s44163_025_00574_5
springer_journals_10_1007_s44163_025_00574_5
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Istanbul
PublicationTitle Discover Artificial Intelligence
PublicationTitleAbbrev Discov Artif Intell
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References T Fawcett (574_CR12) 2006; 27
574_CR18
574_CR16
C Bekkaye (574_CR3) 2025; 14
J Ho (574_CR21) 2020; 33
KP Murphy (574_CR34) 2012
A Sharma (574_CR44) 2024; 6
574_CR19
P Karadayı Ataş (574_CR23) 2024; 12
574_CR25
574_CR24
F Aslam (574_CR1) 2022; 62
574_CR22
F Liu (574_CR30) 2022; 15
J Singh (574_CR48) 2025; 22
N Dhieb (574_CR8) 2020; 8
DMW Powers (574_CR39) 2011; 2
M Hanafy (574_CR17) 2021; 99
A Kumar (574_CR28) 2025; 20
574_CR53
574_CR5
574_CR4
L Maiano (574_CR32) 2023; 231
SZS Nordin (574_CR36) 2024; 14
574_CR7
J Wei (574_CR55) 2021; 2021
574_CR56
P Patel (574_CR37) 2024; 24
PK Ataş (574_CR2) 2023; 24
I Kose (574_CR27) 2015; 36
A Kumar (574_CR29) 2024; 6
A Fernández (574_CR13) 2018
574_CR38
S Viaene (574_CR51) 2002; 69
574_CR43
574_CR41
574_CR40
574_CR47
574_CR46
574_CR45
A Gepp (574_CR14) 2012; 10
VA Fajardo (574_CR11) 2021; 169
CP Robert (574_CR42) 2004
B Efron (574_CR9) 1993
NV Chawla (574_CR6) 2002; 16
H He (574_CR20) 1997; 13
S Viaene (574_CR52) 2004; 16
Y Wang (574_CR54) 2018; 105
574_CR26
R Ming (574_CR33) 2024; 10
G Eom (574_CR10) 2023; 11
C Gomes (574_CR15) 2021; 88
574_CR31
M Sokolova (574_CR49) 2009; 45
574_CR35
S Viaene (574_CR50) 2005; 29
References_xml – ident: 574_CR5
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– ident: 574_CR26
– ident: 574_CR38
  doi: 10.1007/978-3-030-66665-1_17
– ident: 574_CR31
  doi: 10.1109/ICDM.2008.17
– ident: 574_CR4
  doi: 10.1023/A:1010933404324
– volume: 36
  start-page: 283
  year: 2015
  ident: 574_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.018
– volume: 105
  start-page: 87
  year: 2018
  ident: 574_CR54
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2017.11.001
– volume: 10
  start-page: 537
  year: 2012
  ident: 574_CR14
  publication-title: J Data Sci
  doi: 10.6339/JDS.201207_10(3).0010
– ident: 574_CR7
  doi: 10.1145/2939672.2939785
– ident: 574_CR41
– volume: 2021
  start-page: 6033860
  year: 2021
  ident: 574_CR55
  publication-title: J Healthc Eng
  doi: 10.1155/2021/6033860
– volume: 10
  year: 2024
  ident: 574_CR33
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.2088
– volume: 2
  start-page: 37
  year: 2011
  ident: 574_CR39
  publication-title: J Mach Learn Technol
– volume: 24
  start-page: 333
  year: 2024
  ident: 574_CR37
  publication-title: Int J Fuzzy Logic Intell Syst
  doi: 10.5391/IJFIS.2024.24.4.333
– volume: 6
  year: 2024
  ident: 574_CR44
  publication-title: Eng Res Express
  doi: 10.1088/2631-8695/ad5d51
– ident: 574_CR45
  doi: 10.1007/s11831-025-10271-2
– volume: 8
  start-page: 58546
  year: 2020
  ident: 574_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983300
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 574_CR9
  doi: 10.1007/978-1-4899-4541-9
– volume-title: Learning from imbalanced data sets
  year: 2018
  ident: 574_CR13
  doi: 10.1007/978-3-319-98074-4
– ident: 574_CR40
– ident: 574_CR16
– volume: 33
  start-page: 6840
  year: 2020
  ident: 574_CR21
  publication-title: Adv Neural Inf Process Syst
– ident: 574_CR43
  doi: 10.1007/978-3-030-96302-6_5
– ident: 574_CR56
  doi: 10.1109/TII.2024.3366991
– ident: 574_CR22
  doi: 10.14569/IJACSA.2020.0111054
– volume-title: Monte Carlo statistical methods
  year: 2004
  ident: 574_CR42
  doi: 10.1007/978-1-4757-4145-2
– volume: 99
  start-page: 2819
  year: 2021
  ident: 574_CR17
  publication-title: J Theor Appl Inf Technol
– volume: 15
  start-page: 139
  year: 2022
  ident: 574_CR30
  publication-title: Algorithms
  doi: 10.3390/a15050139
– ident: 574_CR24
– ident: 574_CR47
– ident: 574_CR19
  doi: 10.1109/IJCNN.2008.4633969
– volume: 88
  start-page: 591
  year: 2021
  ident: 574_CR15
  publication-title: J Risk Insur
  doi: 10.1111/jori.12359
– ident: 574_CR53
  doi: 10.1007/s10115-025-02377-7
– ident: 574_CR25
  doi: 10.1109/ACCESS.2024.3468993
– volume: 20
  year: 2025
  ident: 574_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0325900
– volume: 45
  start-page: 427
  year: 2009
  ident: 574_CR49
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2009.03.002
– volume: 14
  start-page: 1440
  year: 2025
  ident: 574_CR3
  publication-title: Stat Optim Inf Comput
  doi: 10.19139/soic-2310-5070-2655
– volume: 16
  start-page: 321
  year: 2002
  ident: 574_CR6
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: 574_CR46
  doi: 10.1609/aaai.v30i1.9825
– volume: 62
  year: 2022
  ident: 574_CR1
  publication-title: Res Int Bus Financ
  doi: 10.1016/j.ribaf.2022.101744
– volume-title: Machine learning: a probabilistic perspective
  year: 2012
  ident: 574_CR34
– volume: 69
  start-page: 373
  year: 2002
  ident: 574_CR51
  publication-title: J Risk Insur
  doi: 10.1111/1539-6975.00023
– volume: 12
  start-page: 295
  year: 2024
  ident: 574_CR23
  publication-title: Mathematics
  doi: 10.3390/math12020295
– volume: 16
  start-page: 612
  year: 2004
  ident: 574_CR52
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.1277822
– volume: 14
  start-page: 911
  year: 2024
  ident: 574_CR36
  publication-title: Int J Electr Comput Eng (IJECE)
  doi: 10.11591/ijece.v14i1.pp911-921
– volume: 29
  start-page: 653
  year: 2005
  ident: 574_CR50
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.04.030
– volume: 11
  start-page: 3605
  year: 2023
  ident: 574_CR10
  publication-title: Mathematics
  doi: 10.3390/math11163605
– volume: 27
  start-page: 861
  year: 2006
  ident: 574_CR12
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 169
  year: 2021
  ident: 574_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114463
– volume: 22
  start-page: 195
  year: 2025
  ident: 574_CR48
  publication-title: Quant InfraRed Thermogr J
  doi: 10.1080/17686733.2024.2349976
– volume: 6
  year: 2024
  ident: 574_CR29
  publication-title: Eng Res Express
  doi: 10.1088/2631-8695/ad76f9
– volume: 231
  year: 2023
  ident: 574_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120644
– volume: 24
  start-page: 319
  year: 2023
  ident: 574_CR2
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-023-05443-5
– ident: 574_CR18
– ident: 574_CR35
– volume: 13
  start-page: 329
  year: 1997
  ident: 574_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(97)00045-6
SSID ssj0002857390
Score 2.310538
Snippet Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions, and the...
Abstract Fraud claim detection in auto insurance remains a vital yet complex challenge, mainly due to imbalanced data sets, non-linear feature interactions,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 313
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Auto insurance
Automobile insurance
Classification
Comparative analysis
Computer Science
Datasets
Engineering
Feature selection
Fraud detection
Fraud prevention
Generative hybrid models
Health insurance
Insurance claims
Insurance fraud
Isolation forest
Machine leaning algorithms
Medical research
Methods
Neural networks
Oversampling methods
Support vector machines
Survival analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYQoqBJgARxyQVNQZdbsbdnr-3yiHhUJ4okorP8VI5iD90jEh0_PTPeXV4SoknrXY0sz9jzzdjzDWMn6DNslTAsEYilC855RZS3urBKBF2m2slJ22xCzmbq5kZfP2v1RW_CWnrgduFO7TgqRSRaJbr-GIVSKDmhl3PV2CJWptMXhT8Lpm5zykhIjOa7KplcK8cJehTUvZUKMHkhXniiTNj_AmW-uhjN_uZij33ogCJM2wnus63YHLCPfRMG6PbkJ_bQEkfTqQV_7qn-CnJ3mxUgHIW0tJsAIa7zi6sG5g3YzXoB9ASdWmpEoEQsWPBPLOBgO6ISWCT4PT0fweV0NsJRFDRPaUP5Nei5yOPqM_t1cf7zx1XRtVUoPN05FjZNUimTjq6uKus113WSTlZprK1yXAgbVNCBcz9GM5O1tLwqo5yEMrlSyTg5ZNvNoolHDBDs8LrW1pXach288wpDSOV5cJ5kDtj3fonNXcueYR55krNCDCrEZIUYMWBnpIXHP4n5Og-gPZjOHsx79jBgw16HptuOK4MYlZIAStQDNur1-vT57Sl9-R9T-sp2K7K7_AhmyLbXy038xnb83_V8tTzOhvsPghztmw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELWg5cCl5VOkFDQHbmTFxrHX9gmlKIVTVCFAvVn-hFx2Szap1Ft_ej2ON1GR4MLVu7Iszdh-M555j5B36c4wNKawhCcsXTHGKFLeqspI7lUdGyumW7EJsVjIy0t1URJufSmrHM7EfFD7zmGO_EOCGRjHSd58vPpdoWoUvq4WCY2H5BCZypKfH57NFxdfd1kWKrlIUX3plsk9cwwhSIUqrtiIySp-70bKxP330OYfD6T53jk__t8VPyFHBXHCbOsiT8mD0D4jx4OaA5TN_Zzcbhmo8fiDXzfYyAVZJqeHhGshrszGgw_rXLrVwrIFs1l3gLXsqM0RADO6YMDt6cTBFMYT6CL8mM3H8Hm2GKfRNNEyxg0m6mAgNQ_9C_L9fP7t05eq6DNUDh8vKxOnsRZRBdtQapxiqonCChonykjLODdeeuUZc5Pkr6IRhtE6iKmvo62lCNOX5KDt2vCKQEJNrGmUsbUyTHlnnUyxqHTMW4dzjsj7wUb6akvDoXeEy9miOllUZ4tqPiJnaMbdn0ihnQe61U9ddqQ2kyAlsrPVCVOGwKVMLhsTfLJ0YlIQNiKng1l12de93tt0RMaDY-w__31JJ_-e7TV5TNElc53MKTlYrzbhDXnkrtfLfvW2ePUdatr-hA
  priority: 102
  providerName: ProQuest
Title Generative hybrid models for fraud detection in auto insurance with a comparative analysis of VAE, GAN, and diffusion approaches
URI https://link.springer.com/article/10.1007/s44163-025-00574-5
https://www.proquest.com/docview/3269074856
https://doaj.org/article/a1e8845110324ee588f20f091b21a768
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: BENPR
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: PIMPY
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: M2O
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1BywEOLRQQaUs0B25kpd2NvbaPaZUCh4YIASony58QDhuUTZC48dNrO96UIjjAZQ-217Lssf1mPPMG4EW4M1Ttg1pCA5YuCCF1pLwVheLUitI3mo23ySbYbMavrsQ8B4V1vbd7_ySZTupdsBuJ2KGI6VdjBCUp6F3YpxUX0ZHvPMc4fE3mIsqCJp8jZP78661bKJH130KYvz2Kprvm4vD_RvkQDjK2xMlWGB7BHdcewWGftwHzNj6CB7-QED6Gn1vm6Xjs4ZcfMYALU3qcDgOeRb9SG4vWrZPLVouLFtVmvcTowx5zcjiMllxUaG5oxFFlphNcevw4mY7w1WQ2CqWho4X3m2igw57M3HVP4MPF9P356yLnZShMfLQslB_7knnhdFPXyggiGs80q30lFNeEUmW5FZYQUwU5ZQ1TpC4dG9vS65IzN34Ke-2ydc8AA1oiTSOULoUiwhpteNBBuSFWm9jnAF726yS_bek35I5oOU21DFMt01RLOoCzuJS7lpE6OxUsV59l3olSVY7zyMpWBizpHOU8iKoPsEnXlQrK1wBOe0GQeT93MoDcaEXgtBnAqF_4m-q_D-n435qfwP06yk7ylzmFvfVq457DPfN9vehWQ9g_m87m74ZJ3ofJfBC-l_XbUDN_czn_dA3fB_w5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTYUJ5ioIAXsGIiMo4T2wuEBmjpqO1oFgWVlev4AbNJyjxA3fFFfCO-TjKjIsGuC7ZOZEXO8fW5tu85AM_DmqGpD2lJHrh0whijKHkrEy1yK1NflDxrzCb4ZCJOT-V0C351tTB4rbKLiTFQ29rgHvmrQDMwjxN58eb8W4KuUXi62lloNLA4dBc_Qsq2eD1-H_7vC0r3907eHSStq0Bi8Mgt0T7zKffSlQWl2kgmC89LTv1QalGyPNdWWGkZM8MwyrzgmtHU8cymvkwFd1no9xpsMwR7D7an4-Pp5_WuDhU5z2TaVufEGj2GlCdB11gs_GRJfmkFjEYBl9jtHweycZ3b3_nfRug23GoZNRk1U-AObLnqLux0bhWkDV734GejsI3hnXy9wEI1Em2AFiTwduLnemWJdct4Na0is4ro1bImeFcfvUccwR1roonZyKUT3Sq6kNqTT6O9AfkwmgxCa-ho5v0KNyJJJ9ruFvfh45WMwwPoVXXlHgIJrJAVhdRlKjWT1pRGhFxbGGZLg3324WWHCXXeyIyotaB0RJAKCFIRQSrvw1uEzfpNlAiPDfX8i2ojjtJDJwSqz6WBMzuXCxGmpA_0sKRDHZLMPux2MFJt3FqoDYb6MOiAuHn890969O_ensGNg5PjI3U0nhw-hpsUp0O8E7QLveV85Z7AdfN9OVvMn7YzisDZVUP0NyU1XIs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tXYS4sHyKwgI-wIlGmzpObB8QKuwWqoWqB0DLyev4A3pJln6A9sbv4tfhcZJWiwS3PXBNI6tynsdv7Jn3AJ6GPUNTH9KSPHDphDFGUfJWJlrkVqa-KHnWmE3w6VScnMjZDvzqemGwrLKLiTFQ29rgGflBoBmYx4m8OPBtWcTscPzy7FuCDlJ409rZaTQQOXbnP0L6tnwxOQzf-hml46MPr98mrcNAYvD6LdE-8yn30pUFpdpIJgvPS079UGpRsjzXVlhpGTPDMOO84JrR1PHMpr5MBXdZGPcK7AZKzmgPdmeT97PPmxMeKnKeybTt1In9egzpT4IOstgEypL8wm4YTQMuMN0_Lmfjnjfe-59n6ybcaJk2GTVL4xbsuOo27HUuFqQNanfgZ6O8jWGffD3HBjYS7YGWJPB54hd6bYl1q1iyVpF5RfR6VROs4UdPEkfwJJtoYrYy6kS3Si-k9uTT6GhA3oymg_A0DDT3fo0HlKQTc3fLu_DxUubhHvSqunL3gQS2yIpC6jKVmklrSiNCDi4Ms6XBMfvwvMOHOmvkR9RGaDqiSQU0qYgmlffhFUJo8yZKh8cH9eKLaiOR0kMnBKrSpYFLO5cLEZaqD7SxpEMdks8-7HeQUm08W6otnvow6EC5_fnvf-nBv0d7AtcCLtW7yfT4IVynuDJiqdA-9FaLtXsEV8331Xy5eNwuLgKnl43Q3z51ZUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+hybrid+models+for+fraud+detection+in+auto+insurance+with+a+comparative+analysis+of+VAE%2C+GAN%2C+and+diffusion+approaches&rft.jtitle=Discover+Artificial+Intelligence&rft.au=Bekkaye%2C+Chadia&rft.au=Oukhouya%2C+Hassan&rft.au=Zari%2C+Tarek&rft.au=Guerbaz%2C+Raby&rft.date=2025-12-01&rft.pub=Springer+International+Publishing&rft.eissn=2731-0809&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs44163-025-00574-5&rft.externalDocID=10_1007_s44163_025_00574_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-0809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-0809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-0809&client=summon