Numerical quadrature for singular integrals on fractals

We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ ⊂ R n is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 92; H. 4; S. 2071 - 2124
Hauptverfasser: Gibbs, Andrew, Hewett, David, Moiola, Andrea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ ⊂ R n is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on Γ , including in particular the Hausdorff measure H d restricted to Γ , where d is the Hausdorff dimension of Γ . Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over Γ are decomposed into sums of integrals over suitable partitions of Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.
AbstractList We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ ⊂ R n is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on Γ , including in particular the Hausdorff measure H d restricted to Γ , where d is the Hausdorff dimension of Γ . Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over Γ are decomposed into sums of integrals over suitable partitions of Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.
We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain $$\Gamma \subset \mathbb {R}^n$$ Γ ⊂ R n is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on $$\Gamma$$ Γ , including in particular the Hausdorff measure $$\mathcal {H}^d$$ H d restricted to $$\Gamma$$ Γ , where d is the Hausdorff dimension of $$\Gamma$$ Γ . Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over $$\Gamma$$ Γ are decomposed into sums of integrals over suitable partitions of $$\Gamma$$ Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.
We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ⊂Rn is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on Γ, including in particular the Hausdorff measure Hd restricted to Γ, where d is the Hausdorff dimension of Γ. Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over Γ are decomposed into sums of integrals over suitable partitions of Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.
Author Moiola, Andrea
Gibbs, Andrew
Hewett, David
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-2934-008X
  surname: Gibbs
  fullname: Gibbs, Andrew
  email: andrew.gibbs@ucl.ac.uk
  organization: Department of Mathematics, University College London
– sequence: 2
  givenname: David
  surname: Hewett
  fullname: Hewett, David
  organization: Department of Mathematics, University College London
– sequence: 3
  givenname: Andrea
  surname: Moiola
  fullname: Moiola, Andrea
  organization: Dipartimento di Matematica, Università degli studi di Pavia
BookMark eNp9kD9PwzAUxC1UJNrCF2CKxGzws5s4GVHFP6mCpbvlOHaVKrXbZ2fg2-MSJCQGprvhfu-ebkFmPnhLyC2we2BMPkQAJkvKOKcMhKxpc0HmUEpOG16Vs-wZSAqiqa_IIsY9Yxnjck7k-3iw2Bs9FKdRd6jTiLZwAYvY-904aCx6n-wO9RCL4AuH2qTsr8mly2JvfnRJts9P2_Ur3Xy8vK0fN9SISiTqHOer2gnDRSeMWUkDXLi2NhK4ZtLaatVqMKUpeSu7joNpnW4bKzvXtlKLJbmbzh4xnEYbk9qHEX1uVLyBuuLQlE1O8SllMMSI1qkj9geNnwqYOu-jpn1U3kd976POUP0HMn3SqQ8-oe6H_1ExoTH3-J3F36_-ob4A8XZ8_Q
CitedBy_id crossref_primary_10_1007_s00211_024_01399_7
crossref_primary_10_1093_imanum_drae040
crossref_primary_10_1007_s11075_023_01705_8
crossref_primary_10_1007_s11785_025_01717_3
crossref_primary_10_1016_j_apnum_2025_06_016
Cites_doi 10.1007/BF02437506
10.1007/s13373-013-0041-3
10.1007/s00041-011-9202-5
10.4236/wet.2011.22015
10.1090/S0002-9947-98-02218-1
10.1137/17M1131933
10.1007/s00211-021-01182-y
10.1109/8.664115
10.1512/iumj.1981.30.30055
10.1103/PhysRevA.36.920
10.1007/BF02476031
10.1090/S0025-5718-1982-0669644-3
10.1017/S0334270000002757
10.1016/j.jmaa.2004.10.059
10.1090/S0002-9947-99-01982-0
10.1137/S0036141096306911
10.1007/s11075-007-9111-5
10.1016/j.jmaa.2019.01.036
10.1109/8.475113
10.1063/1.1664597
10.1007/BF02878985
10.1007/978-3-0348-0034-1
10.1080/02786820117868
10.1007/s00023-006-0308-2
10.1142/S0218348X09004296
10.1017/CBO9780511623813
10.1007/978-1-4899-6886-9_5
10.1007/s00041-001-4001-z
10.1007/BF01889599
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-022-01378-9
DatabaseName Springer Nature Link OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 2124
ExternalDocumentID 10_1007_s11075_022_01378_9
GrantInformation_xml – fundername: Università degli Studi di Pavia
  grantid: MIUR, Dipartimenti di Eccellenza; PRIN, NA-FROM-PDEs
  funderid: http://dx.doi.org/10.13039/501100004769
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V053868/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S01375X/1; EP/V053868/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-ff2248f3c23d3cc47c123fb8c712a07ee64ba1c5c52b7dd21cbfab9e7dfbb7a3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851344800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 09:07:24 EST 2025
Tue Nov 18 22:28:08 EST 2025
Sat Nov 29 01:34:59 EST 2025
Fri Feb 21 02:43:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Singular integrals
Hausdorff measure
Fractals
Numerical integration
Boundary element method
Iterated function systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ff2248f3c23d3cc47c123fb8c712a07ee64ba1c5c52b7dd21cbfab9e7dfbb7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2934-008X
OpenAccessLink https://link.springer.com/10.1007/s11075-022-01378-9
PQID 2918621959
PQPubID 2043837
PageCount 54
ParticipantIDs proquest_journals_2918621959
crossref_primary_10_1007_s11075_022_01378_9
crossref_citationtrail_10_1007_s11075_022_01378_9
springer_journals_10_1007_s11075_022_01378_9
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BessisDFournierJServiziGTurchettiGVaientiSMellin transforms of correlation integrals and generalized dimension of strange setsPhysical Review A19873692090172210.1103/PhysRevA.36.920
ManticaGFractal measures and polynomial sampling: I.F.S.-Gaussian integrationNumer. Algorithms200745269281235598810.1007/s11075-007-9111-51131.65027
MarionJMesure de Hausdorff d’un fractal à similitude interneAnn. Sci. Math. Québec19861051848411200613.28007
CarvalhoACaetanoAOn the Hausdorff dimension of continuous functions belonging to Hölder and Besov spaces on fractal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-setsJ. Fourier Anal. Appl.201218386409289873410.1007/s00041-011-9202-51253.28003
FalconerKJThe Geometry of Fractal Sets1986CambridgeCambridge University Press0587.28004
GrahamIGGalerkin methods for second kind integral equations with singularitiesMath. Comp.19823951953366964410.1090/S0025-5718-1982-0669644-30496.65068
Mantica, G., Vaienti, S.: The asymptotic behaviour of the Fourier transforms of orthogonal polynomials I: Mellin transform techniques 8, 265–300 (2007)
EltonJHYanZApproximation of measures by Markov processes and homogeneous affine iterated function systemsConstr. Approx.19895698798272510.1007/BF018895990658.60093
InfusinoMVolčičAUniform distribution on fractalsUnif. Distrib. Theory20094475825594121249.11070
JonssonAWavelets on fractals and Besov spacesJ. Fourier Anal. Appl.19984329340165098010.1007/BF024760310912.42025
SrivatsunGRaniSSKrishnanGSA self-similar fractal Cantor antenna for MICS band wireless applicationsWireless Eng. Tech.2011210711110.4236/wet.2011.22015
Geronimo, J., Hardin, D.: An exact formula for the measure dimensions associated with a class of piecewise linear maps. In: Constructive Approximation, pp. 89–98. Springer (1989)
MóraPEstimate of the Hausdorff measure of the Sierpinski triangleFractals200917137148253545010.1142/S0218348X090042961178.28007
Puente-BaliardaCRomeuJPousRCardamaAOn the behavior of the Sierpinski multiband fractal antennaIEEE T. Antenn. Propag.199846517524161599310.1109/8.6641150944.78529
NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, release 1.1.3 of 2021-09-15
Jonsson, A., Wallin, H.: Function Spaces on Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}$$\end{document}. Math. Rep., 2 (1984)
ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014
BarnsleyMFDemkoSIterated function systems and the global construction of fractalsProc. Roy. Soc. A. Math. Phys. Sci.19853992432757991110588.28002
MoránMReyJ-MSingularity of self-similar measures with respect to Hausdorff measuresT. Am. Math. Soc.199835022972310147569110.1090/S0002-9947-98-02218-10899.28002
Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv:1209.5145 (2012)
FalconerKFractal Geometry: Mathematical Foundations and Applications20143New YorkWiley1285.28011
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, CUP (1995)
TriebelHFractals and Spectra1997BaselBirkhäuser10.1007/978-3-0348-0034-10898.46030
MarionJMesures de Hausdorff d’ensembles fractalsAnn. Sci. Math. Québec1987111119121660624.28003
XiongYZhouJThe Hausdorff measure of a class of Sierpinski carpetsJ. Math. Anal. Appl.2005305121129212811610.1016/j.jmaa.2004.10.0591077.28011
ZhouZWuMThe Hausdorff measure of a Sierpinski carpetScience in China Series A: Math.199942673680171700110.1007/BF028789850984.28005
SorensenCLight scattering by fractal aggregates: a reviewAerosol Science & Technology20013564868710.1080/02786820117868
DrmotaMInfusinoMOn the discrepancy of some generalized Kakutani’s sequences of partitionsUnif. Distrib. Theory201277510429431621313.11084
Falconer, K.: Personal communication
AnselonePMSingularity subtraction in the numerical solution of integral equationsJ. Austral. Math. Soc. Ser. B19812240841862693210.1017/S03342700000027570477.65095
ForteBMendivilFVrscayE“Chaos games” for iterated function systems with grey level mapsSIAM J. Math. Anal.199829878890161772210.1137/S00361410963069110923.58032
KunzeHLa TorreDMendivilFVrscayERFractal-based Methods in Analysis2011New YorkSpringer1237.28002
StrichartzRSelf-similarity in harmonic analysisJ. Fourier Anal. Appl.19941137130706710.1007/s00041-001-4001-z0851.42001
Chandler-Wilde, S.N., Hewett, D.P.: Well-posed PDE and integral equation formulations for scattering by fractal screens. SIAM J. Math. Anal., 50 (2018)
DubucSHamzaouiROn the diameter of the attractor of an IFSC. R. Math. Rep. Acad. Sci. Canada199416859012884300813.58034
HutchinsonJEFractals and self-similarityIndiana Univ. Math. J.19813071374762560010.1512/iumj.1981.30.300550598.28011
Caetano, A.M., Chandler-Wilde, S.N., Gibbs, A., Hewett, D., Moiola, A.: A Hausdorff measure boundary element method for acoustic scattering by fractal screens, In preparation (2022)
SchlittDNumerical solution of a singular integral equation encountered in polymer physicsJ. Math. Phys.1968943643910.1063/1.16645970187.12403
ZubermanLExact Hausdorff and packing measure of certain Cantor sets, not necessarily self-similar or homogeneousJ. Math. Anal. Appl.2019474143156391289510.1016/j.jmaa.2019.01.0361414.28012
BarnsleyMVinceADevelopments in fractal geometryBull. Math. Sci.20133299348308401010.1007/s13373-013-0041-31275.28006
AyerEStrichartzRSExact Hausdorff measure and intervals of maximum density for Cantor setsTrans. Amer. Math. Soc.199935137253741143311010.1090/S0002-9947-99-01982-00933.28003
AmariSBornemannJEfficient numerical computation of singular integrals with applications to electromagneticsIEEE T. Antenn. Propag.1995431343134810.1109/8.475113
Chandler-WildeSNHewettDPMoiolaABessonJBoundary element methods for acoustic scattering by fractal screensNumer. Math.2021147785837424546210.1007/s00211-021-01182-y1475.65209
M Barnsley (1378_CR5) 2013; 3
Y Xiong (1378_CR41) 2005; 305
S Dubuc (1378_CR14) 1994; 16
J Marion (1378_CR31) 1987; 11
MF Barnsley (1378_CR6) 1985; 399
1378_CR16
S Amari (1378_CR2) 1995; 43
L Zuberman (1378_CR43) 2019; 474
A Jonsson (1378_CR24) 1998; 4
KJ Falconer (1378_CR17) 1986
SN Chandler-Wilde (1378_CR12) 2021; 147
Z Zhou (1378_CR42) 1999; 42
PM Anselone (1378_CR3) 1981; 22
C Sorensen (1378_CR37) 2001; 35
J Marion (1378_CR30) 1986; 10
IG Graham (1378_CR21) 1982; 39
R Strichartz (1378_CR39) 1994; 1
D Bessis (1378_CR7) 1987; 36
1378_CR11
E Ayer (1378_CR4) 1999; 351
H Kunze (1378_CR26) 2011
1378_CR32
C Puente-Baliarda (1378_CR35) 1998; 46
G Srivatsun (1378_CR38) 2011; 2
M Morán (1378_CR34) 1998; 350
P Móra (1378_CR33) 2009; 17
1378_CR29
K Falconer (1378_CR18) 2014
JE Hutchinson (1378_CR22) 1981; 30
M Drmota (1378_CR13) 2012; 7
B Forte (1378_CR19) 1998; 29
1378_CR1
G Mantica (1378_CR27) 1996; 12
G Mantica (1378_CR28) 2007; 45
A Carvalho (1378_CR10) 2012; 18
H Triebel (1378_CR40) 1997
1378_CR25
1378_CR20
1378_CR9
1378_CR8
JH Elton (1378_CR15) 1989; 5
M Infusino (1378_CR23) 2009; 4
D Schlitt (1378_CR36) 1968; 9
References_xml – reference: Chandler-WildeSNHewettDPMoiolaABessonJBoundary element methods for acoustic scattering by fractal screensNumer. Math.2021147785837424546210.1007/s00211-021-01182-y1475.65209
– reference: Falconer, K.: Personal communication
– reference: EltonJHYanZApproximation of measures by Markov processes and homogeneous affine iterated function systemsConstr. Approx.19895698798272510.1007/BF018895990658.60093
– reference: TriebelHFractals and Spectra1997BaselBirkhäuser10.1007/978-3-0348-0034-10898.46030
– reference: InfusinoMVolčičAUniform distribution on fractalsUnif. Distrib. Theory20094475825594121249.11070
– reference: AnselonePMSingularity subtraction in the numerical solution of integral equationsJ. Austral. Math. Soc. Ser. B19812240841862693210.1017/S03342700000027570477.65095
– reference: Mantica, G., Vaienti, S.: The asymptotic behaviour of the Fourier transforms of orthogonal polynomials I: Mellin transform techniques 8, 265–300 (2007)
– reference: FalconerKJThe Geometry of Fractal Sets1986CambridgeCambridge University Press0587.28004
– reference: DrmotaMInfusinoMOn the discrepancy of some generalized Kakutani’s sequences of partitionsUnif. Distrib. Theory201277510429431621313.11084
– reference: ManticaGFractal measures and polynomial sampling: I.F.S.-Gaussian integrationNumer. Algorithms200745269281235598810.1007/s11075-007-9111-51131.65027
– reference: MóraPEstimate of the Hausdorff measure of the Sierpinski triangleFractals200917137148253545010.1142/S0218348X090042961178.28007
– reference: Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv:1209.5145 (2012)
– reference: BarnsleyMFDemkoSIterated function systems and the global construction of fractalsProc. Roy. Soc. A. Math. Phys. Sci.19853992432757991110588.28002
– reference: CarvalhoACaetanoAOn the Hausdorff dimension of continuous functions belonging to Hölder and Besov spaces on fractal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-setsJ. Fourier Anal. Appl.201218386409289873410.1007/s00041-011-9202-51253.28003
– reference: DubucSHamzaouiROn the diameter of the attractor of an IFSC. R. Math. Rep. Acad. Sci. Canada199416859012884300813.58034
– reference: JonssonAWavelets on fractals and Besov spacesJ. Fourier Anal. Appl.19984329340165098010.1007/BF024760310912.42025
– reference: BessisDFournierJServiziGTurchettiGVaientiSMellin transforms of correlation integrals and generalized dimension of strange setsPhysical Review A19873692090172210.1103/PhysRevA.36.920
– reference: Jonsson, A., Wallin, H.: Function Spaces on Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}$$\end{document}. Math. Rep., 2 (1984)
– reference: ManticaGA stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measuresConstr. Approx.199612509530141219710.1007/BF024375060878.42014
– reference: FalconerKFractal Geometry: Mathematical Foundations and Applications20143New YorkWiley1285.28011
– reference: GrahamIGGalerkin methods for second kind integral equations with singularitiesMath. Comp.19823951953366964410.1090/S0025-5718-1982-0669644-30496.65068
– reference: NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, release 1.1.3 of 2021-09-15
– reference: HutchinsonJEFractals and self-similarityIndiana Univ. Math. J.19813071374762560010.1512/iumj.1981.30.300550598.28011
– reference: BarnsleyMVinceADevelopments in fractal geometryBull. Math. Sci.20133299348308401010.1007/s13373-013-0041-31275.28006
– reference: SrivatsunGRaniSSKrishnanGSA self-similar fractal Cantor antenna for MICS band wireless applicationsWireless Eng. Tech.2011210711110.4236/wet.2011.22015
– reference: MoránMReyJ-MSingularity of self-similar measures with respect to Hausdorff measuresT. Am. Math. Soc.199835022972310147569110.1090/S0002-9947-98-02218-10899.28002
– reference: SorensenCLight scattering by fractal aggregates: a reviewAerosol Science & Technology20013564868710.1080/02786820117868
– reference: KunzeHLa TorreDMendivilFVrscayERFractal-based Methods in Analysis2011New YorkSpringer1237.28002
– reference: ZhouZWuMThe Hausdorff measure of a Sierpinski carpetScience in China Series A: Math.199942673680171700110.1007/BF028789850984.28005
– reference: StrichartzRSelf-similarity in harmonic analysisJ. Fourier Anal. Appl.19941137130706710.1007/s00041-001-4001-z0851.42001
– reference: MarionJMesure de Hausdorff d’un fractal à similitude interneAnn. Sci. Math. Québec19861051848411200613.28007
– reference: SchlittDNumerical solution of a singular integral equation encountered in polymer physicsJ. Math. Phys.1968943643910.1063/1.16645970187.12403
– reference: XiongYZhouJThe Hausdorff measure of a class of Sierpinski carpetsJ. Math. Anal. Appl.2005305121129212811610.1016/j.jmaa.2004.10.0591077.28011
– reference: MarionJMesures de Hausdorff d’ensembles fractalsAnn. Sci. Math. Québec1987111119121660624.28003
– reference: Chandler-Wilde, S.N., Hewett, D.P.: Well-posed PDE and integral equation formulations for scattering by fractal screens. SIAM J. Math. Anal., 50 (2018)
– reference: ForteBMendivilFVrscayE“Chaos games” for iterated function systems with grey level mapsSIAM J. Math. Anal.199829878890161772210.1137/S00361410963069110923.58032
– reference: Puente-BaliardaCRomeuJPousRCardamaAOn the behavior of the Sierpinski multiband fractal antennaIEEE T. Antenn. Propag.199846517524161599310.1109/8.6641150944.78529
– reference: Caetano, A.M., Chandler-Wilde, S.N., Gibbs, A., Hewett, D., Moiola, A.: A Hausdorff measure boundary element method for acoustic scattering by fractal screens, In preparation (2022)
– reference: Geronimo, J., Hardin, D.: An exact formula for the measure dimensions associated with a class of piecewise linear maps. In: Constructive Approximation, pp. 89–98. Springer (1989)
– reference: Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, CUP (1995)
– reference: ZubermanLExact Hausdorff and packing measure of certain Cantor sets, not necessarily self-similar or homogeneousJ. Math. Anal. Appl.2019474143156391289510.1016/j.jmaa.2019.01.0361414.28012
– reference: AmariSBornemannJEfficient numerical computation of singular integrals with applications to electromagneticsIEEE T. Antenn. Propag.1995431343134810.1109/8.475113
– reference: AyerEStrichartzRSExact Hausdorff measure and intervals of maximum density for Cantor setsTrans. Amer. Math. Soc.199935137253741143311010.1090/S0002-9947-99-01982-00933.28003
– volume: 12
  start-page: 509
  year: 1996
  ident: 1378_CR27
  publication-title: Constr. Approx.
  doi: 10.1007/BF02437506
– volume: 11
  start-page: 111
  year: 1987
  ident: 1378_CR31
  publication-title: Ann. Sci. Math. Québec
– ident: 1378_CR1
– volume: 3
  start-page: 299
  year: 2013
  ident: 1378_CR5
  publication-title: Bull. Math. Sci.
  doi: 10.1007/s13373-013-0041-3
– volume-title: The Geometry of Fractal Sets
  year: 1986
  ident: 1378_CR17
– volume: 399
  start-page: 243
  year: 1985
  ident: 1378_CR6
  publication-title: Proc. Roy. Soc. A. Math. Phys. Sci.
– volume: 18
  start-page: 386
  year: 2012
  ident: 1378_CR10
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-011-9202-5
– volume: 2
  start-page: 107
  year: 2011
  ident: 1378_CR38
  publication-title: Wireless Eng. Tech.
  doi: 10.4236/wet.2011.22015
– volume: 350
  start-page: 2297
  year: 1998
  ident: 1378_CR34
  publication-title: T. Am. Math. Soc.
  doi: 10.1090/S0002-9947-98-02218-1
– ident: 1378_CR11
  doi: 10.1137/17M1131933
– volume: 7
  start-page: 75
  year: 2012
  ident: 1378_CR13
  publication-title: Unif. Distrib. Theory
– ident: 1378_CR9
  doi: 10.1007/s00211-021-01182-y
– volume: 46
  start-page: 517
  year: 1998
  ident: 1378_CR35
  publication-title: IEEE T. Antenn. Propag.
  doi: 10.1109/8.664115
– volume: 16
  start-page: 85
  year: 1994
  ident: 1378_CR14
  publication-title: C. R. Math. Rep. Acad. Sci. Canada
– volume: 30
  start-page: 713
  year: 1981
  ident: 1378_CR22
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1981.30.30055
– volume: 147
  start-page: 785
  year: 2021
  ident: 1378_CR12
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01182-y
– volume: 36
  start-page: 920
  year: 1987
  ident: 1378_CR7
  publication-title: Physical Review A
  doi: 10.1103/PhysRevA.36.920
– volume: 4
  start-page: 329
  year: 1998
  ident: 1378_CR24
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02476031
– volume-title: Fractal-based Methods in Analysis
  year: 2011
  ident: 1378_CR26
– volume-title: Fractal Geometry: Mathematical Foundations and Applications
  year: 2014
  ident: 1378_CR18
– volume: 39
  start-page: 519
  year: 1982
  ident: 1378_CR21
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1982-0669644-3
– volume: 22
  start-page: 408
  year: 1981
  ident: 1378_CR3
  publication-title: J. Austral. Math. Soc. Ser. B
  doi: 10.1017/S0334270000002757
– volume: 305
  start-page: 121
  year: 2005
  ident: 1378_CR41
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.10.059
– ident: 1378_CR8
– ident: 1378_CR25
– volume: 351
  start-page: 3725
  year: 1999
  ident: 1378_CR4
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-99-01982-0
– volume: 29
  start-page: 878
  year: 1998
  ident: 1378_CR19
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141096306911
– volume: 45
  start-page: 269
  year: 2007
  ident: 1378_CR28
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-007-9111-5
– volume: 474
  start-page: 143
  year: 2019
  ident: 1378_CR43
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.01.036
– volume: 43
  start-page: 1343
  year: 1995
  ident: 1378_CR2
  publication-title: IEEE T. Antenn. Propag.
  doi: 10.1109/8.475113
– volume: 9
  start-page: 436
  year: 1968
  ident: 1378_CR36
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1664597
– volume: 42
  start-page: 673
  year: 1999
  ident: 1378_CR42
  publication-title: Science in China Series A: Math.
  doi: 10.1007/BF02878985
– volume: 10
  start-page: 51
  year: 1986
  ident: 1378_CR30
  publication-title: Ann. Sci. Math. Québec
– volume-title: Fractals and Spectra
  year: 1997
  ident: 1378_CR40
  doi: 10.1007/978-3-0348-0034-1
– volume: 35
  start-page: 648
  year: 2001
  ident: 1378_CR37
  publication-title: Aerosol Science & Technology
  doi: 10.1080/02786820117868
– ident: 1378_CR29
  doi: 10.1007/s00023-006-0308-2
– volume: 17
  start-page: 137
  year: 2009
  ident: 1378_CR33
  publication-title: Fractals
  doi: 10.1142/S0218348X09004296
– volume: 4
  start-page: 47
  year: 2009
  ident: 1378_CR23
  publication-title: Unif. Distrib. Theory
– ident: 1378_CR16
– ident: 1378_CR32
  doi: 10.1017/CBO9780511623813
– ident: 1378_CR20
  doi: 10.1007/978-1-4899-6886-9_5
– volume: 1
  start-page: 1
  year: 1994
  ident: 1378_CR39
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-001-4001-z
– volume: 5
  start-page: 69
  year: 1989
  ident: 1378_CR15
  publication-title: Constr. Approx.
  doi: 10.1007/BF01889599
SSID ssj0010027
Score 2.3517118
Snippet We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ ⊂ R n is...
We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain $$\Gamma...
We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ⊂Rn is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2071
SubjectTerms Acoustic waves
Algebra
Algorithms
Approximation
Computer Science
Diameters
Fractal analysis
Fractals
Galerkin method
Helmholtz equations
Integral equations
Integrals
Numeric Computing
Numerical Analysis
Original Paper
Quadratures
Self-similarity
Subtraction
Theory of Computation
Wave scattering
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50-qAPTqfidEoefNPikqxN8yQiDh90CA7ZW2nSBISxX938-8216YqCe_Et0CaU3uXuS-7uO4BrI7nVuiuD1ClH0LNuFGuKKVChEIpxLYp2bx8vYjCIRyP55i_ccp9WWdnEwlBnU4135HdMUge-kQrlfjYPsGsURld9C41t2EGWBFqk7r2vowh45iqinc4SO6QT-6KZsnTOnXuwNhkTE7g7ScmfjqlGm78CpIXf6Tf_-8WHcOARJ3koVeQItsykBU2PPonf23kL9l_XDK75MYjBqozljMl8lWYl8zJxCJfg5QLmrhLPNDHOyXRCLFZbufEJDPtPw8fnwDdZCDSP-DKw1jnx2HLNeMa17gntfJlVsRaUpV1hTNRTKdWhDpkSWcaoVjZV0ojMKiVSfgqNyXRizoA4SykE0vHLWDlYFqnQMK6U7CoaGZaZNtDqByfaE5BjH4xxUlMno1ASJ5SkEEoi23CznjMr6Tc2vt2pJJH4rZgntRjacFvJsn7892rnm1e7gD1sPV9m8XSgsVyszCXs6q_lZ764KhTxG4ul4nI
  priority: 102
  providerName: ProQuest
Title Numerical quadrature for singular integrals on fractals
URI https://link.springer.com/article/10.1007/s11075-022-01378-9
https://www.proquest.com/docview/2918621959
Volume 92
WOSCitedRecordID wos000851344800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c5oM-OJ2K01ny4JsW1mRtmkeVDUEdYxtjb6VJExBGp-vm32_SpiuKCvoW0jSUy-U-ene_A7iSjCghusyNNXO4PaVHofBMCpRPKcdE0Lzd2-yJDofhfM5GtigsK7Pdy5BkLqmrYjftqZhqYpNKQLTvw2rQ0OouNA0bxpPZNnZgPK08xqnlr7ZvQlsq8_0en9VRZWN-CYvm2mbQ_N93HsKBtS7RbcEOR7Aj0xY0raWJ7D3O9FTZzKGca8H-8xbANTsGOtwUoZwFetvESQG8jLSBi8y_BZO6iizQxCJDyxQpU2ylxycwHfSn9w-u7bHgChKQtauU1uGhIgKThAjRo0KrMsVDQT0cd6mUQY_HnvCFjzlNEuwJrmLOJE0U5zQmp1BPl6k8A6QFJaUGjZ-FXFtlAfclJpyzLvcCiRPZBq-kdCQs_rhpg7GIKuRkQ7lIUy7KKRexNlxv33kt0Dd-Xd0pDzCyNzGLMPO002YgdNpwUx5Y9fjn3c7_tvwC9kwn-iKppwP19WojL2FXvK9fspUDjbv-cDR2oPZIXcckmE6cnGs_ADBh4f4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qFdSDb7E-c9CTLnaTbrM5iIhalNbioUhvYZNNQCitdlvFH-V_dLKPFgV78-BtYXcDuzOZ-SYz8w3AsRHMal0VXoTK4dUsXoXadyVQAeeKMs3TcW9PLd5uh92ueCzBZ9EL48oqC5uYGup4oN0Z-TkVPoJvR4Vy-fLqualRLrtajNDI1KJpPt4xZEsu7m9QvieUNm4713dePlXA06zORp616LVCyzRlMdO6xjUab6tCzX0aVbkx9ZqKfB3ogCoex9TXykZKGB5bpXjEcNk5mK-xkLtt1eTeJGnhQrw0uYqGH4FVmPfoZJ16GGa5VmhXB8EwcBPf_eAU3P7Ix6ZurrH6z37QGqzkeJpcZRtgHUqmvwGrObYmueVKNmD5YcJPm2wCb4-zTFWPvI6jOOOVJojfiTs6cZW5JOfR6CVk0CfW9ZLh9RZ0_uJbtqHcH_TNDhD0A5y7YQMiVAg66yowlCklqsqvGxqbCviFPKXO6dXdlI-enBJDOx2QqAMy1QEpKnA6eeclIxeZ-fR-IXiZG5pETqVegbNCdaa3f19td_ZqR7B413loydZ9u7kHSxShXVavtA_l0XBsDmBBv42ek-FhugcIyD9WqS8cxkJ1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4P_Pgm5atTds0j6IOxVkGjrG30KQJCKOba-ffb9KPVUUF8S2kaSiXj7vr3e93ABeSYiVEl1qR3hyWq3QrELZJgfII4Q4WJC_3NuqTMAzGYzr4gOLPs92rkGSBaTAsTUnWmcWqUwPftNdikMUmrQBrP4iuwpprEumNv_48WsYRjNeVxzv1XaxtnaCEzXw_x2fVVNubX0KkuebpNf__zTuwXVqd6LrYJruwIpMWNEsLFJXnO9VdVZGHqq8FW09LYtd0D0i4KEI8E_S6iOKCkBlpwxeZfw4mpRWVBBSTFE0TpAwIS7f3Ydi7G97cW2XtBUtgH2eWUlq3BwoLB8dYCJcIreIUDwSxnahLpPRdHtnCE57DSRw7tuAq4lSSWHFOInwAjWSayENA-gIlxLD004Bra83nnnQw57TLbV86sWyDXUmdiZKX3JTHmLCaUdlIjmnJsVxyjLbhcvnOrGDl-HX0SbWYrDyhKXOorZ05Q63Thqtq8erHP8929Lfh57AxuO2x_kP4eAybplh9kfdzAo1svpCnsC7espd0fpZv3He-2Opk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+quadrature+for+singular+integrals+on+fractals&rft.jtitle=Numerical+algorithms&rft.au=Gibbs%2C+Andrew&rft.au=Hewett%2C+David&rft.au=Moiola%2C+Andrea&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=92&rft.issue=4&rft.spage=2071&rft.epage=2124&rft_id=info:doi/10.1007%2Fs11075-022-01378-9&rft.externalDocID=10_1007_s11075_022_01378_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon