Higher-order symmetric duality for a class of multiobjective fractional programming problems

In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order ( F , α , ρ , d )-convexity, which extends some kinds of generalized convexity, such as second order F -convexity and hi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2012; číslo 1; s. 1
Hlavní autor: Ying, Gao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 20.06.2012
Springer Nature B.V
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order ( F , α , ρ , d )-convexity, which extends some kinds of generalized convexity, such as second order F -convexity and higher-order F -convexity. Under the higher-order ( F , α , ρ , d )-convexity assumptions, we prove the higher-order weak, higher-order strong and higher-order converse duality theorems. Mathematics Subject Classification (2010) 90C29; 90C30; 90C46.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/1029-242X-2012-142