Higher-order symmetric duality for a class of multiobjective fractional programming problems
In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order ( F , α , ρ , d )-convexity, which extends some kinds of generalized convexity, such as second order F -convexity and hi...
Uložené v:
| Vydané v: | Journal of inequalities and applications Ročník 2012; číslo 1; s. 1 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
20.06.2012
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order (
F
,
α
,
ρ
,
d
)-convexity, which extends some kinds of generalized convexity, such as second order
F
-convexity and higher-order
F
-convexity. Under the higher-order (
F
,
α
,
ρ
,
d
)-convexity assumptions, we prove the higher-order weak, higher-order strong and higher-order converse duality theorems.
Mathematics Subject Classification (2010)
90C29; 90C30; 90C46. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1029-242X 1025-5834 1029-242X |
| DOI: | 10.1186/1029-242X-2012-142 |