Boundary element methods for acoustic scattering by fractal screens
We study boundary element methods for time-harmonic scattering in R n ( n = 2 , 3 ) by a fractal planar screen, assumed to be a non-empty bounded subset Γ of the hyperplane Γ ∞ = R n - 1 × { 0 } . We consider two distinct cases: (i) Γ is a relatively open subset of Γ ∞ with fractal boundary (e.g. th...
Uloženo v:
| Vydáno v: | Numerische Mathematik Ročník 147; číslo 4; s. 785 - 837 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0029-599X, 0945-3245 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study boundary element methods for time-harmonic scattering in
R
n
(
n
=
2
,
3
) by a fractal planar screen, assumed to be a non-empty bounded subset
Γ
of the hyperplane
Γ
∞
=
R
n
-
1
×
{
0
}
. We consider two distinct cases: (i)
Γ
is a relatively open subset of
Γ
∞
with fractal boundary (e.g. the interior of the Koch snowflake in the case
n
=
3
); (ii)
Γ
is a compact fractal subset of
Γ
∞
with empty interior (e.g. the Sierpinski triangle in the case
n
=
3
). In both cases our numerical simulation strategy involves approximating the fractal screen
Γ
by a sequence of smoother “prefractal” screens, for which we compute the scattered field using boundary element methods that discretise the associated first kind boundary integral equations. We prove sufficient conditions on the mesh sizes guaranteeing convergence to the limiting fractal solution, using the framework of Mosco convergence. We also provide numerical examples illustrating our theoretical results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0029-599X 0945-3245 |
| DOI: | 10.1007/s00211-021-01182-y |