Boundary element methods for acoustic scattering by fractal screens

We study boundary element methods for time-harmonic scattering in R n ( n = 2 , 3 ) by a fractal planar screen, assumed to be a non-empty bounded subset Γ of the hyperplane Γ ∞ = R n - 1 × { 0 } . We consider two distinct cases: (i) Γ is a relatively open subset of Γ ∞ with fractal boundary (e.g. th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerische Mathematik Ročník 147; číslo 4; s. 785 - 837
Hlavní autori: Chandler-Wilde, Simon N., Hewett, David P., Moiola, Andrea, Besson, Jeanne
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Predmet:
ISSN:0029-599X, 0945-3245
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study boundary element methods for time-harmonic scattering in R n ( n = 2 , 3 ) by a fractal planar screen, assumed to be a non-empty bounded subset Γ of the hyperplane Γ ∞ = R n - 1 × { 0 } . We consider two distinct cases: (i) Γ is a relatively open subset of Γ ∞ with fractal boundary (e.g. the interior of the Koch snowflake in the case n = 3 ); (ii) Γ is a compact fractal subset of Γ ∞ with empty interior (e.g. the Sierpinski triangle in the case n = 3 ). In both cases our numerical simulation strategy involves approximating the fractal screen Γ by a sequence of smoother “prefractal” screens, for which we compute the scattered field using boundary element methods that discretise the associated first kind boundary integral equations. We prove sufficient conditions on the mesh sizes guaranteeing convergence to the limiting fractal solution, using the framework of Mosco convergence. We also provide numerical examples illustrating our theoretical results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01182-y