Boundary element methods for acoustic scattering by fractal screens

We study boundary element methods for time-harmonic scattering in R n ( n = 2 , 3 ) by a fractal planar screen, assumed to be a non-empty bounded subset Γ of the hyperplane Γ ∞ = R n - 1 × { 0 } . We consider two distinct cases: (i) Γ is a relatively open subset of Γ ∞ with fractal boundary (e.g. th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 147; H. 4; S. 785 - 837
Hauptverfasser: Chandler-Wilde, Simon N., Hewett, David P., Moiola, Andrea, Besson, Jeanne
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study boundary element methods for time-harmonic scattering in R n ( n = 2 , 3 ) by a fractal planar screen, assumed to be a non-empty bounded subset Γ of the hyperplane Γ ∞ = R n - 1 × { 0 } . We consider two distinct cases: (i) Γ is a relatively open subset of Γ ∞ with fractal boundary (e.g. the interior of the Koch snowflake in the case n = 3 ); (ii) Γ is a compact fractal subset of Γ ∞ with empty interior (e.g. the Sierpinski triangle in the case n = 3 ). In both cases our numerical simulation strategy involves approximating the fractal screen Γ by a sequence of smoother “prefractal” screens, for which we compute the scattered field using boundary element methods that discretise the associated first kind boundary integral equations. We prove sufficient conditions on the mesh sizes guaranteeing convergence to the limiting fractal solution, using the framework of Mosco convergence. We also provide numerical examples illustrating our theoretical results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01182-y