A Kolmogorov–Chentsov Type Theorem on General Metric Spaces with Applications to Limit Theorems for Banach-Valued Processes
This paper deals with moduli of continuity for paths of random processes indexed by a general metric space Θ with values in a general metric space X . Adapting the moment condition on the increments from the classical Kolmogorov–Chentsov theorem, the obtained result on the modulus of continuity allo...
Gespeichert in:
| Veröffentlicht in: | Journal of theoretical probability Jg. 36; H. 3; S. 1454 - 1486 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0894-9840, 1572-9230 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper deals with moduli of continuity for paths of random processes indexed by a general metric space
Θ
with values in a general metric space
X
. Adapting the moment condition on the increments from the classical Kolmogorov–Chentsov theorem, the obtained result on the modulus of continuity allows for Hölder-continuous modifications if the metric space
X
is complete. This result is universal in the sense that its applicability depends only on the geometry of the space
Θ
. In particular, it is always applicable if
Θ
is a bounded subset of a Euclidean space or a relatively compact subset of a connected Riemannian manifold. The derivation is based on refined chaining techniques developed by Talagrand. As a consequence of the main result, a criterion is presented to guarantee uniform tightness of random processes with continuous paths. This is applied to find central limit theorems for Banach-valued random processes. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0894-9840 1572-9230 |
| DOI: | 10.1007/s10959-022-01207-8 |