A Kolmogorov–Chentsov Type Theorem on General Metric Spaces with Applications to Limit Theorems for Banach-Valued Processes

This paper deals with moduli of continuity for paths of random processes indexed by a general metric space Θ with values in a general metric space X . Adapting the moment condition on the increments from the classical Kolmogorov–Chentsov theorem, the obtained result on the modulus of continuity allo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of theoretical probability Ročník 36; číslo 3; s. 1454 - 1486
Hlavní autori: Krätschmer, Volker, Urusov, Mikhail
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2023
Springer Nature B.V
Predmet:
ISSN:0894-9840, 1572-9230
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper deals with moduli of continuity for paths of random processes indexed by a general metric space Θ with values in a general metric space X . Adapting the moment condition on the increments from the classical Kolmogorov–Chentsov theorem, the obtained result on the modulus of continuity allows for Hölder-continuous modifications if the metric space X is complete. This result is universal in the sense that its applicability depends only on the geometry of the space Θ . In particular, it is always applicable if Θ is a bounded subset of a Euclidean space or a relatively compact subset of a connected Riemannian manifold. The derivation is based on refined chaining techniques developed by Talagrand. As a consequence of the main result, a criterion is presented to guarantee uniform tightness of random processes with continuous paths. This is applied to find central limit theorems for Banach-valued random processes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-022-01207-8