Probabilistic Recursion Theory and Implicit Computational Complexity

We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific annals of computer science Jg. 24; H. 2; S. 177
Hauptverfasser: Lago, Ugo Dal, Zuppiroli, Sara, Gabbrielli, Maurizio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Iasi Alexandru Ioan Cuza University of Iasi 01.01.2014
Schlagworte:
ISSN:1843-8121, 2248-2695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of a polytime sampleable distribution, a key concept in average-case complexity and cryptography.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1843-8121
2248-2695
DOI:10.7561/SACS.2014.2.177