Probabilistic Recursion Theory and Implicit Computational Complexity

We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific annals of computer science Ročník 24; číslo 2; s. 177
Hlavní autoři: Lago, Ugo Dal, Zuppiroli, Sara, Gabbrielli, Maurizio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Iasi Alexandru Ioan Cuza University of Iasi 01.01.2014
Témata:
ISSN:1843-8121, 2248-2695
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that probabilistic computable functions, i.e., those functions outputting distributions and computed by probabilistic Turing machines, can be characterized by a natural generalization of Church and Kleene's partial recursive functions. The obtained algebra, following Leivant, can be restricted so as to capture the notion of a polytime sampleable distribution, a key concept in average-case complexity and cryptography.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1843-8121
2248-2695
DOI:10.7561/SACS.2014.2.177