Practical options for selecting data-driven or physics-based prognostics algorithms with reviews

This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed in the data-driven and physics-based prognostics methods. Each algorithm’s attributes and p...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 133; pp. 223 - 236
Main Authors: An, Dawn, Kim, Nam H., Choi, Joo-Ho
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.01.2015
Elsevier
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed in the data-driven and physics-based prognostics methods. Each algorithm’s attributes and pros and cons are analyzed in terms of model definition, model parameter estimation and ability to handle noise and bias in data. Fatigue crack growth examples are then used to illustrate the characteristics of different algorithms. In order to suggest a suitable algorithm, several studies are made based on the number of data sets, the level of noise and bias, availability of loading and physical models, and complexity of the damage growth behavior. Based on the study, it is concluded that the Gaussian process is easy and fast to implement, but works well only when the covariance function is properly defined. The neural network has the advantage in the case of large noise and complex models but only with many training data sets. The particle filter and Bayesian method are superior to the former methods because they are less affected by noise and model complexity, but work only when physical model and loading conditions are available. •Practical review of data-driven and physics-based prognostics are provided.•As common prognostics algorithms, NN, GP, PF and BM are introduced.•Algorithms’ attributes, pros and cons, and applicable conditions are discussed.•This will be helpful to choose the best algorithm for different applications.
AbstractList This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed in the data-driven and physics-based prognostics methods. Each algorithm's attributes and pros and cons are analyzed in terms of model definition, model parameter estimation and ability to handle noise and bias in data. Fatigue crack growth examples are then used to illustrate the characteristics of different algorithms. In order to suggest a suitable algorithm, several studies are made based on the number of data sets, the level of noise and bias, availability of loading and physical models, and complexity of the damage growth behavior. Based on the study, it is concluded that the Gaussian process is easy and fast to implement, but works well only when the covariance function is properly defined. The neural network has the advantage in the case of large noise and complex models but only with many training data sets. The particle filter and Bayesian method are superior to the former methods because they are less affected by noise and model complexity, but work only when physical model and loading conditions are available.
This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed in the data-driven and physics-based prognostics methods. Each algorithm’s attributes and pros and cons are analyzed in terms of model definition, model parameter estimation and ability to handle noise and bias in data. Fatigue crack growth examples are then used to illustrate the characteristics of different algorithms. In order to suggest a suitable algorithm, several studies are made based on the number of data sets, the level of noise and bias, availability of loading and physical models, and complexity of the damage growth behavior. Based on the study, it is concluded that the Gaussian process is easy and fast to implement, but works well only when the covariance function is properly defined. The neural network has the advantage in the case of large noise and complex models but only with many training data sets. The particle filter and Bayesian method are superior to the former methods because they are less affected by noise and model complexity, but work only when physical model and loading conditions are available. •Practical review of data-driven and physics-based prognostics are provided.•As common prognostics algorithms, NN, GP, PF and BM are introduced.•Algorithms’ attributes, pros and cons, and applicable conditions are discussed.•This will be helpful to choose the best algorithm for different applications.
Author Choi, Joo-Ho
Kim, Nam H.
An, Dawn
Author_xml – sequence: 1
  givenname: Dawn
  surname: An
  fullname: An, Dawn
  email: dawnan@ufl.edu
  organization: Dept. of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
– sequence: 2
  givenname: Nam H.
  surname: Kim
  fullname: Kim, Nam H.
  email: nkim@ufl.edu
  organization: Dept. of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
– sequence: 3
  givenname: Joo-Ho
  surname: Choi
  fullname: Choi, Joo-Ho
  email: jhchoi@kau.ac.kr
  organization: Dept. of Aerospace & Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do 412-791, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28887268$$DView record in Pascal Francis
BookMark eNp9kU1LJDEQhoO44OjuH9hTLgt76Tbp9EcCexFZXUHQg55jTVI9ZuhJxlSr-O_NMLIHD55eqLxPSD05ZocxRWTspxS1FLI_XdcZiepGyLYWpi5xwBZSD6YSWvWHbCFMJyutGnHEjonWQojWdMOCPdxmcHNwMPG0nUOKxMeUOeGEZRxX3MMMlc_hBSMvB9vHNwqOqiUQer7NaRUTFZ44TKuUw_y4If5agmd8CfhK39m3ESbCHx95wu4v_t6d_6uuby6vzs-uK6d6NVfYaum0bmDozVKi96AGo9HrQS2dMKN0sjNSqN47kKaMXVu26Rr0sPSNH9UJ-72_t7zp6RlptptADqcJIqZnsrLvZNu1nVal-uujClQWHzNEF8huc9hAfrON1npoel16zb7nciLKOP6vSGF32u3a7rTbnXYrjC1RIP0JcmGGndk5Q5i-Rv_sUSyeirxsyQWMDn3I5TesT-Er_B3iHKJs
CitedBy_id crossref_primary_10_1016_j_apacoust_2018_04_005
crossref_primary_10_1016_j_actaastro_2018_10_029
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1016_j_jclepro_2016_10_185
crossref_primary_10_1016_j_autcon_2024_105546
crossref_primary_10_1061__ASCE_PS_1949_1204_0000340
crossref_primary_10_1016_j_ymssp_2018_03_003
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1109_TII_2018_2793246
crossref_primary_10_1016_j_ijhydene_2023_08_098
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1088_1742_6596_2386_1_012027
crossref_primary_10_1088_2631_8695_ad68c9
crossref_primary_10_1016_j_ress_2019_03_044
crossref_primary_10_1109_JPHOTOV_2023_3272071
crossref_primary_10_1088_1361_6501_ad25dc
crossref_primary_10_1016_j_procir_2020_03_080
crossref_primary_10_1016_j_ress_2024_110493
crossref_primary_10_1016_j_ress_2019_02_002
crossref_primary_10_3390_app10020467
crossref_primary_10_1016_j_ast_2019_105423
crossref_primary_10_1016_j_ress_2017_11_020
crossref_primary_10_1016_j_coche_2021_100671
crossref_primary_10_1007_s00170_021_08275_w
crossref_primary_10_1016_j_ijfatigue_2021_106352
crossref_primary_10_1016_j_ress_2021_108203
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1016_j_ces_2021_117354
crossref_primary_10_1109_TR_2017_2727489
crossref_primary_10_1016_j_measurement_2023_114082
crossref_primary_10_1088_2515_7639_abca7b
crossref_primary_10_1093_jcde_qwad032
crossref_primary_10_1016_j_ijmecsci_2025_110723
crossref_primary_10_1007_s10916_020_1534_8
crossref_primary_10_1109_TAI_2023_3248561
crossref_primary_10_1109_ACCESS_2022_3214320
crossref_primary_10_1016_j_ymssp_2019_106315
crossref_primary_10_1016_j_ijfatigue_2023_107536
crossref_primary_10_1016_j_ijfatigue_2023_107658
crossref_primary_10_1016_j_ress_2017_02_007
crossref_primary_10_1177_14759217221127252
crossref_primary_10_1002_bate_202300105
crossref_primary_10_1016_j_measurement_2021_110393
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_1155_2018_7396293
crossref_primary_10_1016_j_asoc_2022_109630
crossref_primary_10_1016_j_jmsy_2023_10_010
crossref_primary_10_1109_JSEN_2023_3337365
crossref_primary_10_1016_j_asoc_2020_106665
crossref_primary_10_1016_j_microrel_2023_114914
crossref_primary_10_1016_j_cie_2024_110744
crossref_primary_10_1017_aer_2025_25
crossref_primary_10_1016_j_cie_2019_106206
crossref_primary_10_1109_TIE_2021_3050382
crossref_primary_10_1002_qre_3288
crossref_primary_10_1016_j_ress_2025_110893
crossref_primary_10_3390_electronics9101711
crossref_primary_10_1016_j_autcon_2023_104860
crossref_primary_10_1016_j_compchemeng_2017_11_006
crossref_primary_10_1061__ASCE_EY_1943_7897_0000405
crossref_primary_10_1016_j_microrel_2017_03_026
crossref_primary_10_1016_j_ress_2022_108922
crossref_primary_10_1177_1475921720933155
crossref_primary_10_1016_j_ijhydene_2024_06_090
crossref_primary_10_1016_j_ress_2020_107194
crossref_primary_10_1016_j_ress_2022_108482
crossref_primary_10_1016_j_measurement_2022_112085
crossref_primary_10_1177_00219983211037048
crossref_primary_10_1007_s10845_016_1221_2
crossref_primary_10_1016_j_eswa_2021_115627
crossref_primary_10_1109_TIM_2022_3209417
crossref_primary_10_1007_s40684_018_0055_0
crossref_primary_10_1016_j_scs_2019_101485
crossref_primary_10_1016_j_ress_2020_107147
crossref_primary_10_1016_j_measurement_2025_118070
crossref_primary_10_1177_16878132231215187
crossref_primary_10_1016_j_ress_2018_07_004
crossref_primary_10_2514_1_J060979
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1109_TR_2015_2500681
crossref_primary_10_1155_2022_9895907
crossref_primary_10_1016_j_aei_2020_101071
crossref_primary_10_1016_j_ymssp_2018_12_008
crossref_primary_10_1080_00401706_2025_2539785
crossref_primary_10_1109_ACCESS_2019_2935470
crossref_primary_10_1109_ACCESS_2024_3517705
crossref_primary_10_3390_su14159464
crossref_primary_10_1109_TPEL_2016_2618422
crossref_primary_10_1002_cjce_25460
crossref_primary_10_1016_j_engfracmech_2023_109478
crossref_primary_10_1007_s11356_021_18033_w
crossref_primary_10_1016_j_ress_2024_110385
crossref_primary_10_1109_TR_2016_2570542
crossref_primary_10_1142_S0218539325500068
crossref_primary_10_1002_qre_2947
crossref_primary_10_1016_j_measurement_2019_107097
crossref_primary_10_1016_j_ress_2025_110906
crossref_primary_10_1109_ACCESS_2022_3211258
crossref_primary_10_1016_j_ress_2021_107683
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1007_s10845_024_02461_9
crossref_primary_10_1016_j_ymssp_2018_12_039
crossref_primary_10_1051_e3sconf_20184301020
crossref_primary_10_1016_j_ymssp_2024_111992
crossref_primary_10_1007_s00158_021_02868_5
crossref_primary_10_15302_J_FEM_2018050
crossref_primary_10_1016_j_jsv_2022_117276
crossref_primary_10_1016_j_ress_2018_03_022
crossref_primary_10_1088_1361_6501_aa56c9
crossref_primary_10_3390_technologies9010018
crossref_primary_10_1109_ACCESS_2019_2906388
crossref_primary_10_1177_1748006X221087503
crossref_primary_10_1016_j_jobe_2023_107376
crossref_primary_10_1016_j_engfracmech_2023_109242
crossref_primary_10_1016_j_ymssp_2019_106486
crossref_primary_10_1016_j_ymssp_2021_108599
crossref_primary_10_1016_j_measurement_2020_107950
crossref_primary_10_1108_EL_09_2023_0208
crossref_primary_10_1016_j_ress_2017_01_023
crossref_primary_10_1177_09544062241286372
crossref_primary_10_1016_j_ymssp_2022_109747
crossref_primary_10_1109_JSEN_2025_3592180
crossref_primary_10_1002_lpor_202000254
crossref_primary_10_1016_j_ymssp_2023_110910
crossref_primary_10_3390_machines10020072
crossref_primary_10_1177_1475921720971551
crossref_primary_10_1080_01430750_2022_2056917
crossref_primary_10_1007_s10845_018_1453_4
crossref_primary_10_1016_j_ymssp_2020_106987
crossref_primary_10_1016_j_ymssp_2022_108805
crossref_primary_10_1002_qre_2001
crossref_primary_10_1016_j_ress_2021_107746
crossref_primary_10_1109_TR_2020_3002262
crossref_primary_10_32604_sdhm_2022_016905
crossref_primary_10_1007_s12206_018_0507_z
crossref_primary_10_1016_j_asoc_2022_109570
crossref_primary_10_1016_j_ress_2021_107740
crossref_primary_10_1016_j_ress_2020_107225
crossref_primary_10_1016_j_oceaneng_2025_122286
crossref_primary_10_1007_s41062_022_00888_8
crossref_primary_10_1121_1_5129076
crossref_primary_10_3390_electronics12020312
crossref_primary_10_1109_ACCESS_2023_3243432
crossref_primary_10_1016_j_ymssp_2022_108917
crossref_primary_10_1177_1748006X18764061
crossref_primary_10_1016_j_apenergy_2020_115338
crossref_primary_10_1016_j_engfracmech_2023_109103
crossref_primary_10_1109_ACCESS_2021_3118283
crossref_primary_10_1016_j_ress_2021_107758
crossref_primary_10_1016_j_aei_2019_100977
crossref_primary_10_1016_j_ress_2021_108048
crossref_primary_10_1088_1361_665X_abdd00
crossref_primary_10_2514_1_G004616
crossref_primary_10_1007_s12541_021_00513_1
crossref_primary_10_3390_s23156860
crossref_primary_10_1016_j_cpc_2020_107256
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_1016_j_rser_2017_06_002
crossref_primary_10_1051_matecconf_20167400005
crossref_primary_10_1017_pds_2022_141
crossref_primary_10_1177_1687814016685963
crossref_primary_10_1007_s00170_022_09291_0
crossref_primary_10_1016_j_egyr_2020_11_265
crossref_primary_10_1088_1361_6501_abbe3b
crossref_primary_10_1016_j_advengsoft_2023_103461
crossref_primary_10_3390_app13084655
crossref_primary_10_1007_s13349_020_00434_z
crossref_primary_10_1109_ACCESS_2021_3135511
crossref_primary_10_1016_j_ymssp_2016_01_010
crossref_primary_10_1016_j_procs_2021_05_033
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1016_j_ymssp_2017_01_050
crossref_primary_10_3390_rs14143357
crossref_primary_10_1007_s11771_020_4450_7
crossref_primary_10_1016_j_isatra_2020_09_017
crossref_primary_10_1007_s11694_024_02533_7
crossref_primary_10_1016_j_ces_2021_116571
crossref_primary_10_1109_ACCESS_2019_2911307
crossref_primary_10_1109_JSEN_2022_3145194
crossref_primary_10_1017_aer_2024_101
crossref_primary_10_1088_1361_6501_ad8947
crossref_primary_10_1007_s12206_020_1230_0
crossref_primary_10_1016_j_arcontrol_2021_04_001
crossref_primary_10_3390_fractalfract8050293
crossref_primary_10_1109_TIM_2024_3470018
crossref_primary_10_1016_j_ress_2018_06_021
crossref_primary_10_3390_s23198124
crossref_primary_10_1007_s00500_019_04311_w
crossref_primary_10_1016_j_ress_2016_09_005
crossref_primary_10_1016_j_ress_2017_04_005
crossref_primary_10_1088_1361_6501_ac2fe8
crossref_primary_10_1016_j_ress_2023_109479
crossref_primary_10_1016_j_compchemeng_2016_08_018
crossref_primary_10_1016_j_ress_2017_09_021
crossref_primary_10_3390_ma15217797
crossref_primary_10_1016_j_ress_2021_108063
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_ress_2017_05_042
crossref_primary_10_1016_j_ress_2024_110515
crossref_primary_10_1016_j_ress_2024_110517
crossref_primary_10_1002_qre_2688
crossref_primary_10_1109_TIM_2017_2735661
crossref_primary_10_3390_aerospace8050129
crossref_primary_10_1177_1748006X221147441
crossref_primary_10_3390_en9110896
crossref_primary_10_1016_j_advengsoft_2018_02_006
crossref_primary_10_1038_s41598_024_67259_4
crossref_primary_10_3390_s21227655
crossref_primary_10_1109_JIOT_2023_3272535
crossref_primary_10_1109_TR_2017_2691730
crossref_primary_10_1177_1748006X221132870
crossref_primary_10_1177_0954406217734885
crossref_primary_10_1016_j_jmsy_2024_08_025
crossref_primary_10_1016_j_scs_2019_101886
crossref_primary_10_1016_j_cja_2017_02_005
crossref_primary_10_1038_s41598_025_98845_9
crossref_primary_10_1016_j_neucom_2018_09_076
crossref_primary_10_1016_j_taml_2023_100440
crossref_primary_10_3390_su13126828
crossref_primary_10_1002_stc_2969
crossref_primary_10_3390_app12168071
crossref_primary_10_1155_2023_1091276
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1007_s41403_022_00342_2
crossref_primary_10_1109_ACCESS_2019_2948291
crossref_primary_10_1016_j_ejor_2018_02_033
crossref_primary_10_3390_app13137706
crossref_primary_10_1016_j_enbuild_2024_114898
crossref_primary_10_3390_s19051070
crossref_primary_10_3390_su13158548
crossref_primary_10_1016_j_apm_2023_05_042
crossref_primary_10_1016_j_paerosci_2021_100758
crossref_primary_10_3390_jmse13071321
crossref_primary_10_3390_app122211725
crossref_primary_10_3390_aerospace11090741
crossref_primary_10_1002_cphc_202100829
crossref_primary_10_1016_j_engfailanal_2025_109683
crossref_primary_10_1016_j_jmsy_2023_02_019
crossref_primary_10_1002_adem_202201430
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_3390_s18113909
crossref_primary_10_1016_j_aei_2021_101405
crossref_primary_10_1016_j_aei_2021_101404
crossref_primary_10_1088_1757_899X_806_1_012041
crossref_primary_10_3390_aerospace9120839
crossref_primary_10_1016_j_ress_2024_110666
crossref_primary_10_1016_j_aei_2023_102094
crossref_primary_10_1016_j_compchemeng_2022_107669
crossref_primary_10_1016_j_ymssp_2023_111037
crossref_primary_10_3390_app11083380
crossref_primary_10_1016_j_rser_2025_115408
crossref_primary_10_3390_machines11020211
crossref_primary_10_1016_j_asoc_2020_106628
crossref_primary_10_3389_fenrg_2022_991343
crossref_primary_10_1016_j_compind_2016_12_008
crossref_primary_10_1109_JSEN_2024_3411818
crossref_primary_10_1007_s12046_021_01582_8
crossref_primary_10_1109_JSEN_2020_2979797
crossref_primary_10_1109_TIM_2015_2427891
crossref_primary_10_1109_TIM_2023_3251391
crossref_primary_10_1016_j_ress_2022_108322
crossref_primary_10_1016_j_ultras_2017_07_016
crossref_primary_10_3390_app10041323
crossref_primary_10_3390_pr12050849
crossref_primary_10_1007_s00500_022_07129_1
crossref_primary_10_1016_j_ijcip_2020_100391
crossref_primary_10_1631_FITEE_2100580
crossref_primary_10_1080_19401493_2019_1597924
crossref_primary_10_1109_TIM_2024_3481588
crossref_primary_10_3390_act14080382
Cites_doi 10.1016/j.jpowsour.2011.03.101
10.36001/phmconf.2010.v2i1.1753
10.1016/j.aei.2004.08.001
10.1155/2013/425740
10.1214/ss/1177012413
10.1109/ICIINFS.2008.4798417
10.1016/j.ymssp.2005.09.012
10.1016/0893-6080(95)00144-1
10.2307/1270528
10.1016/j.renene.2013.06.025
10.2514/6.2012-1435
10.1016/j.wear.2011.02.010
10.1111/j.1467-9868.2011.01007.x
10.2514/1.C031808
10.1016/j.eswa.2007.06.029
10.1098/rstl.1763.0053
10.1016/j.ijfatigue.2007.03.004
10.1007/s11063-009-9108-2
10.1177/0142331208092030
10.1109/PHM.2008.4711464
10.1109/TIM.2008.2005963
10.1007/s12206-013-0428-9
10.1109/ICSMC.2006.385301
10.1016/j.asoc.2012.08.031
10.1109/ICICISYS.2009.5358175
10.1007/s00158-012-0776-6
10.1016/j.procs.2013.05.057
10.1214/aoms/1177704472
10.1109/72.857781
10.1109/78.978383
10.1109/MIM.2013.6495676
10.1016/j.ejor.2010.11.018
10.1080/00949655.2013.848452
10.1117/12.469869
10.1115/1.3662552
10.5391/IJFIS.2007.7.4.221
10.1109/AERO.2011.5747574
10.1016/j.probengmech.2010.07.010
10.1016/j.ijhydene.2014.05.005
10.1109/TR.2014.2299152
10.1177/1045389X08099602
10.1080/00949659708811843
10.1115/1.3656900
10.1162/neco.1994.6.6.1289
10.1109/72.478409
10.1016/S0893-6080(05)80155-8
10.1016/j.ymssp.2012.08.016
10.1049/ip-cds:20040495
10.1080/10618600.1994.10474644
10.1016/j.mineng.2013.05.026
10.1111/1467-9868.00280
10.1016/S0169-7439(97)00061-0
10.1016/j.ymssp.2006.02.009
10.1007/s11222-010-9224-x
10.1016/j.ress.2013.02.019
10.1016/j.hbrcj.2013.04.001
10.1016/S0951-8320(01)00148-X
10.1016/S0893-6080(05)80092-9
10.1016/j.csda.2012.04.020
10.1016/j.ymssp.2012.05.004
10.1109/IJCNN.2001.938431
10.1016/0893-6080(90)90049-Q
10.1109/NAFIPS.2005.1548498
10.1016/j.jsv.2004.02.058
10.1109/TSMCB.2003.811293
10.1046/j.1365-8711.2003.06271.x
10.1016/j.apenergy.2014.01.066
10.1016/j.rser.2013.07.026
10.1016/j.engappai.2014.02.009
10.3969/j.issn.1004-4132.2011.03.010
10.1016/j.cma.2013.07.011
10.2514/1.J051268
10.1162/neco.1995.7.5.867
10.1177/1475921711424520
10.1016/j.ymssp.2013.06.004
10.1016/j.renene.2011.06.023
10.1016/j.ress.2009.08.001
10.1142/S0129065704001899
10.5539/eer.v1n1p81
10.1016/j.ymssp.2011.01.007
10.1016/j.ress.2005.11.035
10.1016/j.ress.2012.11.011
10.1016/0890-6955(94)90083-3
10.1016/S0893-6080(99)00080-5
10.1023/A:1020281327116
10.1109/TNN.2011.2162110
10.1109/ICMTMA.2011.337
10.1016/j.neucom.2013.05.024
10.1016/j.apenergy.2013.05.075
10.36001/phmconf.2010.v2i1.1896
10.1088/0954-898X/8/3/004
10.1057/jos.2012.20
10.1016/j.csda.2004.02.006
10.1016/j.microrel.2012.12.004
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
DOI 10.1016/j.ress.2014.09.014
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
Statistics
Physics
EISSN 1879-0836
EndPage 236
ExternalDocumentID 28887268
10_1016_j_ress_2014_09_014
S0951832014002245
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7TB
8FD
FR3
ID FETCH-LOGICAL-c363t-e481c882a769b1edda3798ed873bc09f1c1591036dca19d87c483252edabd2df3
ISICitedReferencesCount 342
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345469600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Mon Sep 29 04:33:34 EDT 2025
Wed Apr 02 07:08:22 EDT 2025
Sat Nov 29 07:56:38 EST 2025
Tue Nov 18 22:33:02 EST 2025
Fri Feb 23 02:28:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Physics-based prognostics
Gaussian process regression
Neural network
Bayesian inference
Data-driven prognostics
Particle filter
Availability
Bayes estimation
Monte Carlo method
Parameter estimation
Contour line
Regression analysis
Review
Data driven modelling
Modeling
Fatigue crack
Noise level
Crack propagation
Particle method
Gaussian process
Model matching
Covariance
Physical model
Damaging
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-e481c882a769b1edda3798ed873bc09f1c1591036dca19d87c483252edabd2df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651454583
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1651454583
pascalfrancis_primary_28887268
crossref_primary_10_1016_j_ress_2014_09_014
crossref_citationtrail_10_1016_j_ress_2014_09_014
elsevier_sciencedirect_doi_10_1016_j_ress_2014_09_014
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Reliability engineering & system safety
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Paciorek, Schervish (bib84) 2004; vol. 16
Bediaga, Mendizabal, Arnaiz, Munoa (bib10) 2013; 16
Xing, Y, Miao, Q, Tsui, K-L, Pecht, M., Prognostics and health monitoring for lithium-ion battery. 2011 In: IEEE international conference, pp. 242–247.
Guan, X, Liu, Y, Saxena, A, Celaya, J, Goebel, K., Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27–October 1, 2009.
Zhang, Lee (bib17) 2011; 196
Rumelhart, Hinton, Williams (bib38) 1986; vol. 1
Liu, D, Pang, J, Zhou, J, Peng, Y., Data-driven prognostics for lithium-ion battery based on Gaussian process regression, 2012. In: Prognostics and system health management conference, Beijing, China; May 23–25, 2012.
Si, Wang, Hu, Chen, Zhou (bib32) 2013; 35
Jacobs (bib60) 1995; 7
Nawi, Ransing, Ransing (bib58) 2008; 4
Freitas, de JFG., “Bayesian methods for neural networks.” PhD thesis. University of Cambridge, UK, 2003.
Yan, Liu, Han, Qiu (bib28) 2013; 27
Santner, Williams, Notz (bib80) 2003
Tang, Song, Li, Deng (bib4) 2014; 62
Choi JH, An D, Gang J, Joo J, Kim NH. Bayesian approach for parameter estimation in the structural analysis and prognosis. In: Proceedings of the annual conference of the prognostics and health management society, Portland, OR; October 13–16, 2010.
Daigle, M, Goebel, K., Multiple damage progression paths in model-based prognostics. In: IEEE Aerospace conference, Big Sky, Montana; 2011.
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (bib14) 2014; 42
He, Tan, Sun (bib42) 2004; 151
Merwe, Rvd, Doucet, A, Freitas, N. de, Wan, E., The unscented particle filter. In: NIPS; 2000, pp. 584–590.
Bodén (bib39) 2002
Chang, Hsieh (bib51) 2011; 7
Giurgiutiu V., Current issues in vibration-based fault diagnostics and prognostics. In: SPIE’s ninth annual international symposium on smart structures and materials and seventh annual international symposium on NDE for health monitoring and diagnostics, San Diego, CA; March 17–21, 2002.
Paris, Erdogan (bib129) 1963; 85
Specht (bib73) 1990; 3
Subudhi, B, Jena, D, Gupta, MM, Memetic differential evolution trained neural networks for nonlinear system identification. In: IEEE region 10 colloquium and the third international conference on industrial and information systems, Kharagpur, India; December 8–10, 2008.
Ahmadzadeh, Lundberg (bib22) 2013; 53
.
Yan, Gao (bib7) 2007; 21
Grall, Bérenguer, Dieulle (bib11) 2002; 76
Kunli M, Yunxin W. Fault diagnosis of rolling element bearing based on vibration frequency analysis. In: Proceedings of the third international conference on measuring technology and mechatronics automation, Shangshai, China; January 6–7, 2011.
Drucker, Cortes, Jackel, LeCun, Vapnik (bib61) 1994; 6
Wang, WP, Liao, S, Xing, TW., Particle filter for state and parameter estimation in passive ranging. In: IEEE international conference on intelligent computing and intelligent systems. Shanghai, China; 2009.
Chao, Zhi, Liu, Min (bib63) 2014; 32
Rubin (bib119) 1998; vol. 3
Gómez, Franco, Jérez (bib48) 2009; 30
Rasmussen, Williams (bib81) 2006
Bicciato, S, Pandin, M, Didonè, G, Bello, CD., Analysis of an associative memory neural network for pattern identification in gene expression data. In: Biokdd01, workshop on data mining in bioinformatics, pp. 22–30.
Andrianakis, Challenor (bib96) 2012; 56
Mohanty, Das, Chattopadhyay, Peralta (bib83) 2009; 20
Liu, Li, Al-Khalifa, Hamouda, Coit, Elsayed (bib12) 2013; 45
Khosravi, Nahavandi, Creighton, Atiya (bib78) 2011; 22
Saha, Goebel, Christophersen (bib15) 2009; 31
An, Choi, Kim (bib122) 2012; 11
Soares, Antunes, Araújo (bib59) 2013; 121
Storvik (bib132) 2002; 50
Zhang, Yuen (bib45) 2013; 17
Mao, Tan, Ser (bib76) 2000; 11
Chryssoloiuris, Lee, Ramsey (bib67) 1996; 7
Zhang, Khawaja, Patrick, Vachtsevanos, Orchard, Saxena (bib126) 2009; 58
Andrieu, Freitas de, Doucet, Jordan (bib115) 2003; 50
Gelfand, Sahu (bib121) 1994; 3
Oden, Prudencio, Bauman (bib97) 2013; 266
Coppe, A, Haftka, RT, Kim, NH, Yuan, FG., Reducing uncertainty in damage growth properties by structural health monitoring. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27–October 1, 2009.
Yang, L, Kavli, T, Carlin, M, Clausen, S, Groot, PFM., An evaluation of confidence bound estimation methods for neural networks. In: European symposium on intelligent techniques; 2000, Aachen, Germany, September 14–15, 2000.
Xing, Y, Williard, N, Tsui, K-L, Pecht, M., A comparative review of prognostics-based reliability methods for lithium batteries. In: Prognostics and system health management conference, Shenzhen, China; May 24–25, 2011.
Ostafe, D, Neural network hidden layer number determination using pattern recognition techniques. In: Second Romanian-Hungarian joint symposium on applied computational intelligence, Timisoara, Romania; 2005.
Jardine, Lin, Banjevic (bib1) 2006; 20
Deguchi, Kamimoto, Wang, Yan, Liu, Watanabe (bib5) 2014; 6
Kang, Zhao, Ma (bib54) 2014; 121
1997.
Chen, SC, Lin, SW, Tseng, TY, Lin, HC, Optimization of back-propagation network using simulated annealing approach. In: IEEE international conference on systems, man, and cybernetics, Taipei, Taiwan; October 8–11, 2006.
Sacks, Welch, Mitchell, Wynn (bib87) 1989; 4
Silva, Gouriveau, Jemeï, Hissel, Boulon, Agbossou (bib25) 2014; 39
Si, Wang, Hu, Zhou (bib13) 2011; 213
Khosravi, Nahavandi, Creighton (bib72) 2013; 112
Khawaja, T, Vachtsevanos, G, Wu, B., Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, 2005. In: Annual meeting of the north American Fuzzy Information Processing Society, Ann Arbor, MI; June 22–25, 2005.
Happel, Murre (bib44) 1994; 7
Wang, Balakrishnan, Guo, Jiang (bib31) 2013
MacKay, DJC., Gaussian processes-a replacement for supervised neural networks? Tutorial lecture notes for NIPS, UK
Higuchi (bib111) 1997; 59
Coppe, Haftka, Kim (bib30) 2011; 49
Zio, Maio (bib24) 2010; 95
Kalman (bib102) 1960; 82
He, W, Williard, N, Osterman, M, Pecht, M., Prognostics of lithium-ion batteries using extended Kalman filtering. In: Proceedings of IMAPS advanced technology workshop on high reliability microelectronics for military applications, Linthicum Heights, MD, USA; May 2011, pp. 17–19.
Xu, Xu (bib19) 2011; 22
Gilks, Berzuini (bib114) 2001; 63
Rivals, Personnaz (bib69) 2000; 13
Wilson AG, Adams RP. Gaussian process covariance kernels for pattern discovery and extrapolation. arXiv preprint arXiv:1302.4245; 2013. URL
Liao, Köttig (bib18) 2014; 63
Wilamowski, BM, Iplikci, S, Kaynak, O, Efe, MÖ., An algorithm for fast convergence in training neural networks. In: Proceedings of the international joint conference on neural networks, Vol. 3; 2001. pp. 1778–1782.
Orchard, Vachtsevanos (bib107) 2007; 7
An, D, Choi, JH, Kim, NH., A comparison study of methods for parameter estimation in the physics-based prognostics. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu, Hawaii; April 23–26, 2012.
Salomon, Hemmen (bib55) 1996; 9
Seeger (bib27) 2004; 14
Doucet, De Freitas, Gordon (bib104) 2001
Rebba, Mahadevan, Huang (bib98) 2006; 91
Lawrence, Seeger, Herbrich (bib91) 2003; vol. 15
Sheela, Deepa (bib49) 2013; 2013
Sargent (bib99) 2013; 7
Kitagawa (bib112) 1987; 82
Coppe, Pais, Haftka, Kim (bib101) 2012; 49
Firth, Lahav, Somerville (bib37) 2003; 339
Ling, Mahadevan (bib100) 2013; 111
Gramacy, Lee (bib95) 2012; 22
Samuel, Pines (bib3) 2005; 282
Guo, Zhao, Lu, Wang (bib52) 2012; 37
Sugumaran, Sabareesh, Ramachandran (bib6) 2008; 34
Neal, RM., Bayesian learning for neural networks PhD thesis, University of Toronto, Ontario, Canada, 1995.
Huang, Torgeir, Cui (bib130) 2008; 30
Martin (bib2) 1994; 34
An, Choi, Kim (bib110) 2013; 115
An, Choi (bib120) 2013; 2
Qiua, Lee, Linc, Yu (bib127) 2003; 17
Melkumyan, A, Ramos, F., “A sparse covariance function for exact Gaussian process inference in large datasets. In: IJCAI 2009, proceedings of the 21st International joint conference on artificial intelligence, Pasadena, CA., July 11–17; 2009, pp. 1936–1942.
Li, Wang, Ismail (bib23) 2013; 13
Naftaly, Intrator, Horn (bib64) 1997; 8
Svozil, Kvasnička, Pospíchal (bib34) 1997; 39
Efron, Tibshirani (bib71) 1994
Kim, Park (bib116) 2011; 26
Miao, Xie, Cui, Liang, Pecht (bib118) 2013; 53
Gelman, Carlin, Stern, Rubin (bib79) 2004
Sang, Huang (bib94) 2012; 74
Bayes (bib106) 1763; 53
Rovithakis, Maniadakis, Zervakis (bib46) 2004; 34
Belhouari, Bermak (bib85) 2004; 47
Liu, Dong, Peng (bib33) 2012; 32
An, Choi, Schmitz, Kim (bib109) 2011; 270
Abouel-seoud, Elmorsy, Dyab (bib128) 2011; 1
Radzieński, Krawczuk, Palacz (bib9) 2011; 25
Benkedjouh, Medjaher, Zerhouni, Rechak (bib29) 2013; 19
Gu, J, Azarian, MH, Pecht, MG., Failure prognostics of multilayer ceramic capacitors in temperature-humidity-bias conditions 2008. In: International conference on prognostics and health management, Denver, Colorado; October 6–9, 2008.
Duch, Jankowski (bib35) 1999; 2
Neal (bib89) 1998; vol. 6
Liu, Li (bib41) 2004
Veaux, Schumi, Schweinsberg, Ungar (bib68) 1998; 40
Williams (bib82) 1997; vol. 9
Chakraborty, Mehrotra, Mohan, Ranka (bib21) 1992; 5
Parzen (bib74) 1962; 33
Krogh, Vedelsby (bib62) 1995; vol. 7
Foster, Waagen, Aijaz, Hurley, Luis, Rinsky (bib92) 2009; 10
An, Choi (bib88) 2012; 46
Liu, J, Saxena, A, Goebel, K, Saha, B, Wang, W, An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In: Annual conference of the prognostics and health management society, Portland, Oregon; October 10–16, 2010.
Hodhod, Ahmed (bib53) 2013; 9
Lawrence, S, Giles, CL, Tsoi, AC., What size neural network gives optimal generalization? Convergence properties of backpropagation technical reports, UM computer science department, UMIACS; Octobor 15, 1998.
10.1016/j.ress.2014.09.014_bib50
Kalman (10.1016/j.ress.2014.09.014_bib102) 1960; 82
Yan (10.1016/j.ress.2014.09.014_bib28) 2013; 27
Zhang (10.1016/j.ress.2014.09.014_bib45) 2013; 17
Rebba (10.1016/j.ress.2014.09.014_bib98) 2006; 91
10.1016/j.ress.2014.09.014_bib57
10.1016/j.ress.2014.09.014_bib56
Salomon (10.1016/j.ress.2014.09.014_bib55) 1996; 9
Naftaly (10.1016/j.ress.2014.09.014_bib64) 1997; 8
Andrianakis (10.1016/j.ress.2014.09.014_bib96) 2012; 56
Zhang (10.1016/j.ress.2014.09.014_bib126) 2009; 58
Benkedjouh (10.1016/j.ress.2014.09.014_bib29) 2013; 19
Liu (10.1016/j.ress.2014.09.014_bib41) 2004
Sacks (10.1016/j.ress.2014.09.014_bib87) 1989; 4
Rasmussen (10.1016/j.ress.2014.09.014_bib81) 2006
Oden (10.1016/j.ress.2014.09.014_bib97) 2013; 266
Tang (10.1016/j.ress.2014.09.014_bib4) 2014; 62
Saha (10.1016/j.ress.2014.09.014_bib15) 2009; 31
Veaux (10.1016/j.ress.2014.09.014_bib68) 1998; 40
Sang (10.1016/j.ress.2014.09.014_bib94) 2012; 74
Qiua (10.1016/j.ress.2014.09.014_bib127) 2003; 17
Ahmadzadeh (10.1016/j.ress.2014.09.014_bib22) 2013; 53
10.1016/j.ress.2014.09.014_bib47
10.1016/j.ress.2014.09.014_bib43
Neal (10.1016/j.ress.2014.09.014_bib89) 1998; vol. 6
10.1016/j.ress.2014.09.014_bib40
Wang (10.1016/j.ress.2014.09.014_bib31) 2013
Si (10.1016/j.ress.2014.09.014_bib32) 2013; 35
Martin (10.1016/j.ress.2014.09.014_bib2) 1994; 34
Duch (10.1016/j.ress.2014.09.014_bib35) 1999; 2
Drucker (10.1016/j.ress.2014.09.014_bib61) 1994; 6
Radzieński (10.1016/j.ress.2014.09.014_bib9) 2011; 25
10.1016/j.ress.2014.09.014_bib36
An (10.1016/j.ress.2014.09.014_bib88) 2012; 46
Gelfand (10.1016/j.ress.2014.09.014_bib121) 1994; 3
Chao (10.1016/j.ress.2014.09.014_bib63) 2014; 32
Mao (10.1016/j.ress.2014.09.014_bib76) 2000; 11
An (10.1016/j.ress.2014.09.014_bib120) 2013; 2
Kitagawa (10.1016/j.ress.2014.09.014_bib112) 1987; 82
Krogh (10.1016/j.ress.2014.09.014_bib62) 1995; vol. 7
Gómez (10.1016/j.ress.2014.09.014_bib48) 2009; 30
10.1016/j.ress.2014.09.014_bib26
Seeger (10.1016/j.ress.2014.09.014_bib27) 2004; 14
Lawrence (10.1016/j.ress.2014.09.014_bib91) 2003; vol. 15
Gilks (10.1016/j.ress.2014.09.014_bib114) 2001; 63
Foster (10.1016/j.ress.2014.09.014_bib92) 2009; 10
Chryssoloiuris (10.1016/j.ress.2014.09.014_bib67) 1996; 7
Gelman (10.1016/j.ress.2014.09.014_bib79) 2004
Belhouari (10.1016/j.ress.2014.09.014_bib85) 2004; 47
Liao (10.1016/j.ress.2014.09.014_bib18) 2014; 63
Rovithakis (10.1016/j.ress.2014.09.014_bib46) 2004; 34
Specht (10.1016/j.ress.2014.09.014_bib73) 1990; 3
10.1016/j.ress.2014.09.014_bib20
Sargent (10.1016/j.ress.2014.09.014_bib99) 2013; 7
Li (10.1016/j.ress.2014.09.014_bib23) 2013; 13
Kim (10.1016/j.ress.2014.09.014_bib116) 2011; 26
Svozil (10.1016/j.ress.2014.09.014_bib34) 1997; 39
Rumelhart (10.1016/j.ress.2014.09.014_bib38) 1986; vol. 1
10.1016/j.ress.2014.09.014_bib16
Zio (10.1016/j.ress.2014.09.014_bib24) 2010; 95
An (10.1016/j.ress.2014.09.014_bib122) 2012; 11
Coppe (10.1016/j.ress.2014.09.014_bib101) 2012; 49
Ling (10.1016/j.ress.2014.09.014_bib100) 2013; 111
Andrieu (10.1016/j.ress.2014.09.014_bib115) 2003; 50
Mohanty (10.1016/j.ress.2014.09.014_bib83) 2009; 20
Kang (10.1016/j.ress.2014.09.014_bib54) 2014; 121
10.1016/j.ress.2014.09.014_bib93
10.1016/j.ress.2014.09.014_bib90
Chakraborty (10.1016/j.ress.2014.09.014_bib21) 1992; 5
Chang (10.1016/j.ress.2014.09.014_bib51) 2011; 7
An (10.1016/j.ress.2014.09.014_bib110) 2013; 115
Coppe (10.1016/j.ress.2014.09.014_bib30) 2011; 49
10.1016/j.ress.2014.09.014_bib131
Hodhod (10.1016/j.ress.2014.09.014_bib53) 2013; 9
Bayes (10.1016/j.ress.2014.09.014_bib106) 1763; 53
Orchard (10.1016/j.ress.2014.09.014_bib107) 2007; 7
10.1016/j.ress.2014.09.014_bib8
Paris (10.1016/j.ress.2014.09.014_bib129) 1963; 85
Bodén (10.1016/j.ress.2014.09.014_bib39) 2002
Khosravi (10.1016/j.ress.2014.09.014_bib78) 2011; 22
Huang (10.1016/j.ress.2014.09.014_bib130) 2008; 30
Si (10.1016/j.ress.2014.09.014_bib13) 2011; 213
10.1016/j.ress.2014.09.014_bib125
Liu (10.1016/j.ress.2014.09.014_bib12) 2013; 45
10.1016/j.ress.2014.09.014_bib123
Samuel (10.1016/j.ress.2014.09.014_bib3) 2005; 282
10.1016/j.ress.2014.09.014_bib124
Silva (10.1016/j.ress.2014.09.014_bib25) 2014; 39
Parzen (10.1016/j.ress.2014.09.014_bib74) 1962; 33
10.1016/j.ress.2014.09.014_bib86
Yan (10.1016/j.ress.2014.09.014_bib7) 2007; 21
Deguchi (10.1016/j.ress.2014.09.014_bib5) 2014; 6
Efron (10.1016/j.ress.2014.09.014_bib71) 1994
Jacobs (10.1016/j.ress.2014.09.014_bib60) 1995; 7
Rubin (10.1016/j.ress.2014.09.014_bib119) 1998; vol. 3
10.1016/j.ress.2014.09.014_bib70
Storvik (10.1016/j.ress.2014.09.014_bib132) 2002; 50
10.1016/j.ress.2014.09.014_bib117
Sugumaran (10.1016/j.ress.2014.09.014_bib6) 2008; 34
Sheela (10.1016/j.ress.2014.09.014_bib49) 2013; 2013
10.1016/j.ress.2014.09.014_bib113
10.1016/j.ress.2014.09.014_bib77
An (10.1016/j.ress.2014.09.014_bib109) 2011; 270
10.1016/j.ress.2014.09.014_bib75
Paciorek (10.1016/j.ress.2014.09.014_bib84) 2004; vol. 16
Santner (10.1016/j.ress.2014.09.014_bib80) 2003
Bediaga (10.1016/j.ress.2014.09.014_bib10) 2013; 16
Nawi (10.1016/j.ress.2014.09.014_bib58) 2008; 4
Higuchi (10.1016/j.ress.2014.09.014_bib111) 1997; 59
Lee (10.1016/j.ress.2014.09.014_bib14) 2014; 42
Miao (10.1016/j.ress.2014.09.014_bib118) 2013; 53
Soares (10.1016/j.ress.2014.09.014_bib59) 2013; 121
Jardine (10.1016/j.ress.2014.09.014_bib1) 2006; 20
Liu (10.1016/j.ress.2014.09.014_bib33) 2012; 32
Doucet (10.1016/j.ress.2014.09.014_bib104) 2001
Grall (10.1016/j.ress.2014.09.014_bib11) 2002; 76
Xu (10.1016/j.ress.2014.09.014_bib19) 2011; 22
10.1016/j.ress.2014.09.014_bib108
10.1016/j.ress.2014.09.014_bib105
10.1016/j.ress.2014.09.014_bib103
Abouel-seoud (10.1016/j.ress.2014.09.014_bib128) 2011; 1
Rivals (10.1016/j.ress.2014.09.014_bib69) 2000; 13
Happel (10.1016/j.ress.2014.09.014_bib44) 1994; 7
Khosravi (10.1016/j.ress.2014.09.014_bib72) 2013; 112
10.1016/j.ress.2014.09.014_bib66
10.1016/j.ress.2014.09.014_bib65
Firth (10.1016/j.ress.2014.09.014_bib37) 2003; 339
Zhang (10.1016/j.ress.2014.09.014_bib17) 2011; 196
Williams (10.1016/j.ress.2014.09.014_bib82) 1997; vol. 9
He (10.1016/j.ress.2014.09.014_bib42) 2004; 151
Gramacy (10.1016/j.ress.2014.09.014_bib95) 2012; 22
Guo (10.1016/j.ress.2014.09.014_bib52) 2012; 37
References_xml – volume: 17
  start-page: 441
  year: 2013
  end-page: 448
  ident: bib45
  article-title: Toward a hybrid approach of primitive cognitive network process and particle swarm optimization neural network for forecasting
  publication-title: Procedia Comput Sci
– volume: 20
  start-page: 887
  year: 2009
  end-page: 896
  ident: bib83
  article-title: Gaussian process time series model for life prognosis of metallic structures
  publication-title: J Intell Mater Syst Struct
– volume: 25
  start-page: 2169
  year: 2011
  end-page: 2190
  ident: bib9
  article-title: Improvement of damage detection methods based on experimental modal parameters
  publication-title: Mech Syst Sig Process
– reference: Merwe, Rvd, Doucet, A, Freitas, N. de, Wan, E., The unscented particle filter. In: NIPS; 2000, pp. 584–590.
– volume: 6
  year: 2014
  ident: bib5
  article-title: Applications of laser diagnostics to thermal power plants and engines
  publication-title: Appl Therm Eng
– volume: 9
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib53
  article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete
  publication-title: HBRC J
– volume: 7
  start-page: 6837
  year: 2011
  end-page: 6847
  ident: bib51
  article-title: Particle swarm optimization based on back propagation network forecasting exchange rates
  publication-title: Int J Innovative Comput Inf Control
– year: 2004
  ident: bib41
  article-title: Fuzzy neural network theory and application
– volume: 282
  start-page: 475
  year: 2005
  end-page: 508
  ident: bib3
  article-title: A review of vibration-based techniques for helicopter transmission diagnostics
  publication-title: J Sound Vib
– reference: Coppe, A, Haftka, RT, Kim, NH, Yuan, FG., Reducing uncertainty in damage growth properties by structural health monitoring. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27–October 1, 2009.
– volume: 56
  start-page: 4215
  year: 2012
  end-page: 4228
  ident: bib96
  article-title: The effect of the nugget on Gaussian process emulators of computer models
  publication-title: Comput Stat Data Anal
– volume: 2
  start-page: 1771
  year: 2013
  end-page: 1779
  ident: bib120
  article-title: Improved MCMC method for parameter estimation based on marginal probability density function
  publication-title: J Mech Sci Technol
– volume: 5
  start-page: 961
  year: 1992
  end-page: 970
  ident: bib21
  article-title: Forecasting the behavior of multivariate time series using neural networks
  publication-title: Neural Networks
– volume: 49
  start-page: 1965
  year: 2012
  end-page: 1973
  ident: bib101
  article-title: Using a simple crack growth model in predicting remaining useful life
  publication-title: J Aircr
– reference: Xing, Y, Miao, Q, Tsui, K-L, Pecht, M., Prognostics and health monitoring for lithium-ion battery. 2011 In: IEEE international conference, pp. 242–247.
– reference: Wilamowski, BM, Iplikci, S, Kaynak, O, Efe, MÖ., An algorithm for fast convergence in training neural networks. In: Proceedings of the international joint conference on neural networks, Vol. 3; 2001. pp. 1778–1782.
– reference: Liu, D, Pang, J, Zhou, J, Peng, Y., Data-driven prognostics for lithium-ion battery based on Gaussian process regression, 2012. In: Prognostics and system health management conference, Beijing, China; May 23–25, 2012.
– volume: 49
  start-page: 2818
  year: 2011
  end-page: 2821
  ident: bib30
  article-title: Uncertainty identification of damage growth parameters using nonlinear regression
  publication-title: AIAA J
– volume: 30
  start-page: 71
  year: 2009
  end-page: 87
  ident: bib48
  article-title: Neural network architecture selection: can function complexity help?
  publication-title: Neural Proc Lett
– volume: 8
  start-page: 283
  year: 1997
  end-page: 296
  ident: bib64
  article-title: Optimal ensemble averaging of neural networks
  publication-title: Network Comput Neural Syst
– volume: vol. 16
  year: 2004
  ident: bib84
  article-title: Nonstationary covariance functions for Gaussian process regression
  publication-title: Advances in neural information processing systems
– volume: 34
  start-page: 527
  year: 1994
  end-page: 551
  ident: bib2
  article-title: A review by discussion of condition monitoring and fault diagnosis in machine tools
  publication-title: Int J Mach Tools Manuf
– volume: 62
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib4
  article-title: Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
  publication-title: Renewable Energy
– volume: 111
  start-page: 217
  year: 2013
  end-page: 231
  ident: bib100
  article-title: Quantitative model validation techniques: new insights
  publication-title: Reliab EngSyst Saf
– volume: 21
  start-page: 824
  year: 2007
  end-page: 839
  ident: bib7
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mech Syst Sig Process
– volume: 35
  start-page: 219
  year: 2013
  end-page: 237
  ident: bib32
  article-title: A wiener process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Sig Process
– volume: 112
  start-page: 120
  year: 2013
  end-page: 129
  ident: bib72
  article-title: Quantifying uncertainties of neural network-based electricity price forecasts
  publication-title: Appl Energy
– volume: vol. 15
  start-page: 625
  year: 2003
  end-page: 632
  ident: bib91
  article-title: Fast sparse Gaussian process methods: the information vector machine
  publication-title: Advances in neural information processing systems
– reference: Daigle, M, Goebel, K., Multiple damage progression paths in model-based prognostics. In: IEEE Aerospace conference, Big Sky, Montana; 2011.
– volume: 115
  start-page: 161
  year: 2013
  end-page: 169
  ident: bib110
  article-title: Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab
  publication-title: Reliab EngSyst Saf
– volume: 1
  start-page: 81
  year: 2011
  end-page: 93
  ident: bib128
  article-title: Robust prognostics concept for gearbox with artificially induced gear crack utilizing acoustic emission
  publication-title: Energy Environ Res
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib13
  article-title: Remaining useful life estimation—a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
– volume: 91
  start-page: 1390
  year: 2006
  end-page: 1397
  ident: bib98
  article-title: Validation and error estimation of computational models
  publication-title: Reliab Eng Syst Saf
– volume: 63
  start-page: 127
  year: 2001
  end-page: 146
  ident: bib114
  article-title: Following a moving target-Monte Carlo inference for dynamic Bayesian models
  publication-title: R Stat Soc B
– volume: 339
  start-page: 1195
  year: 2003
  ident: bib37
  article-title: Estimating photometric redshifts with artificial neural networks
  publication-title: Mon Not R Astron Soc
– volume: 30
  start-page: 2
  year: 2008
  end-page: 10
  ident: bib130
  article-title: An engineering model of fatigue crack growth under variable amplitude loading
  publication-title: Int J Fatigue
– volume: 85
  start-page: 528
  year: 1963
  end-page: 534
  ident: bib129
  article-title: A critical analysis of crack propagation laws
  publication-title: Trans ASME, J Basic Eng Ser D
– volume: 46
  start-page: 533
  year: 2012
  end-page: 547
  ident: bib88
  article-title: Efficient reliability analysis based on Bayesian framework under input variable and metamodel uncertainties
  publication-title: Struct Multi Optim
– volume: 53
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib22
  article-title: Remaining useful life prediction of grinding mill liners using an artificial neural network
  publication-title: Miner Eng
– volume: 13
  start-page: 283
  year: 2013
  end-page: 291
  ident: bib23
  article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis
  publication-title: Appl Soft Comput
– reference: Wilson AG, Adams RP. Gaussian process covariance kernels for pattern discovery and extrapolation. arXiv preprint arXiv:1302.4245; 2013. URL:
– volume: 40
  start-page: 273
  year: 1998
  end-page: 282
  ident: bib68
  article-title: Prediction intervals for neural networks via nonlinear regression
  publication-title: Technometrics
– volume: 121
  start-page: 498
  year: 2013
  end-page: 511
  ident: bib59
  article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
  publication-title: Neurocomputing
– reference: Lawrence, S, Giles, CL, Tsoi, AC., What size neural network gives optimal generalization? Convergence properties of backpropagation technical reports, UM computer science department, UMIACS; Octobor 15, 1998.
– volume: 16
  start-page: 20
  year: 2013
  end-page: 25
  ident: bib10
  article-title: Ball bearing damage detection using traditional signal processing algorithms
  publication-title: IEEE Instrum Meas Mag
– volume: 2
  start-page: 163
  year: 1999
  end-page: 212
  ident: bib35
  article-title: Survey of neural transfer functions
  publication-title: Neural Comput Surv
– volume: 6
  start-page: 1289
  year: 1994
  end-page: 1301
  ident: bib61
  article-title: Boosting and other ensemble methods
  publication-title: Neural Comput
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: bib118
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron Reliab
– reference: Chen, SC, Lin, SW, Tseng, TY, Lin, HC, Optimization of back-propagation network using simulated annealing approach. In: IEEE international conference on systems, man, and cybernetics, Taipei, Taiwan; October 8–11, 2006.
– volume: 11
  start-page: 293
  year: 2012
  end-page: 303
  ident: bib122
  article-title: Identification of correlated damage parameters under noise and bias using Bayesian inference
  publication-title: Struct Health Monit
– volume: 121
  start-page: 20
  year: 2014
  end-page: 27
  ident: bib54
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl Energy
– volume: 63
  start-page: 191
  year: 2014
  end-page: 207
  ident: bib18
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Trans Reliab
– volume: 34
  start-page: 695
  year: 2004
  end-page: 702
  ident: bib46
  article-title: A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
– reference: ; 1997.
– volume: 22
  start-page: 1341
  year: 2011
  end-page: 1356
  ident: bib78
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Tran Neural Networks
– year: 2003
  ident: bib80
  article-title: The design and analysis of computer experiments
– volume: 3
  start-page: 261
  year: 1994
  end-page: 276
  ident: bib121
  article-title: On Markov Chain Monte Carlo acceleration
  publication-title: J Comput Graph Stat
– reference: Bicciato, S, Pandin, M, Didonè, G, Bello, CD., Analysis of an associative memory neural network for pattern identification in gene expression data. In: Biokdd01, workshop on data mining in bioinformatics, pp. 22–30.
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib1
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Sig Process
– volume: 50
  start-page: 281
  year: 2002
  end-page: 289
  ident: bib132
  article-title: Particle filters in state space models with the presence of unknown static parameters
  publication-title: IEEE Tran Signal Process
– volume: 9
  start-page: 589
  year: 1996
  end-page: 601
  ident: bib55
  article-title: Accelerating backpropagation through dynamic self-adaptation
  publication-title: Neural Networks
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: bib27
  article-title: Gaussian processes for machine learning
  publication-title: Int J Neural Syst
– volume: 50
  start-page: 5
  year: 2003
  end-page: 43
  ident: bib115
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach Learn
– volume: vol. 6
  start-page: 475
  year: 1998
  end-page: 501
  ident: bib89
  article-title: Regression and classification using Gaussian process priors
  publication-title: Bayesian statistics
– volume: vol. 1
  start-page: 318
  year: 1986
  end-page: 362
  ident: bib38
  article-title: Learning internal representations by error propagation
  publication-title: In: Parallel distributed processing: explorations in the microstructure of cognition
– volume: 2013
  year: 2013
  ident: bib49
  article-title: Review on methods to fix number of hidden neurons in neural networks
  publication-title: Math Prob Eng
– volume: 31
  start-page: 293
  year: 2009
  end-page: 308
  ident: bib15
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans Inst Meas Control
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib74
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
– volume: 17
  start-page: 127
  year: 2003
  end-page: 140
  ident: bib127
  article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
  publication-title: Adv Eng Inf
– reference: Subudhi, B, Jena, D, Gupta, MM, Memetic differential evolution trained neural networks for nonlinear system identification. In: IEEE region 10 colloquium and the third international conference on industrial and information systems, Kharagpur, India; December 8–10, 2008.
– volume: 39
  start-page: 11128
  year: 2014
  end-page: 11144
  ident: bib25
  article-title: Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems
  publication-title: Int J Hydrogen Energy
– reference: Gu, J, Azarian, MH, Pecht, MG., Failure prognostics of multilayer ceramic capacitors in temperature-humidity-bias conditions 2008. In: International conference on prognostics and health management, Denver, Colorado; October 6–9, 2008.
– volume: 266
  start-page: 162
  year: 2013
  end-page: 184
  ident: bib97
  article-title: Virtual model validation of complex multiscale systems: applications to nonlinear elastostatics
  publication-title: Comput Meth Appl Mech Eng
– year: 2006
  ident: bib81
  article-title: Gaussian processes for machine learning
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: bib87
  article-title: Design and analysis of computer experiments
  publication-title: Stat Sci
– reference: Melkumyan, A, Ramos, F., “A sparse covariance function for exact Gaussian process inference in large datasets. In: IJCAI 2009, proceedings of the 21st International joint conference on artificial intelligence, Pasadena, CA., July 11–17; 2009, pp. 1936–1942.
– volume: 7
  start-page: 985
  year: 1994
  end-page: 1004
  ident: bib44
  article-title: The design and evolution of modular neural network architectures
  publication-title: Neural Networks
– volume: 7
  start-page: 12
  year: 2013
  end-page: 24
  ident: bib99
  article-title: Verification and validation of simulation models
  publication-title: J Simul
– volume: 74
  start-page: 111
  year: 2012
  end-page: 132
  ident: bib94
  article-title: A full scale approximation of covariance functions for large spatial data sets
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– year: 2002
  ident: bib39
  article-title: A guide to recurrent neural networks and backpropagation. In: The DALLAS project. Report from the NUTEK-supported project AIS-8: application of data analysis with learning systems, 1999–2001
– reference: Choi JH, An D, Gang J, Joo J, Kim NH. Bayesian approach for parameter estimation in the structural analysis and prognosis. In: Proceedings of the annual conference of the prognostics and health management society, Portland, OR; October 13–16, 2010.
– start-page: 1
  year: 2013
  end-page: 17
  ident: bib31
  article-title: Residual life estimation based on bivariate non-stationary gamma degradation process
  publication-title: J Stat Comput Simul
– volume: 53
  start-page: 370
  year: 1763
  end-page: 418
  ident: bib106
  article-title: An essay towards solving a problem in the doctrine of chances
  publication-title: Philos Trans R Soc London
– reference: Freitas, de JFG., “Bayesian methods for neural networks.” PhD thesis. University of Cambridge, UK, 2003.
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: bib17
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– year: 1994
  ident: bib71
  article-title: An introduction to the bootstrap
– volume: 7
  start-page: 221
  year: 2007
  end-page: 227
  ident: bib107
  article-title: A particle filtering approach for on-line failure prognosis in a planetary carrier plate
  publication-title: Int J Fuzzy Logic Intell Syst
– volume: 26
  start-page: 194
  year: 2011
  end-page: 201
  ident: bib116
  article-title: Sequential Monte Carlo filters for abruptly changing state estimation
  publication-title: Probab Eng Mech
– year: 2004
  ident: bib79
  article-title: Bayesian data analysis
– volume: 10
  start-page: 857
  year: 2009
  end-page: 882
  ident: bib92
  article-title: Stable and efficient Gaussian process calculations
  publication-title: J Mach Learn Res
– volume: 82
  start-page: 1032
  year: 1987
  end-page: 1063
  ident: bib112
  article-title: Non–Gaussian state space modeling of nonstationary time series (with Discussion),
  publication-title: J Am Stat Assoc
– reference: Guan, X, Liu, Y, Saxena, A, Celaya, J, Goebel, K., Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27–October 1, 2009.
– volume: 47
  start-page: 705
  year: 2004
  end-page: 712
  ident: bib85
  article-title: Gaussian process for nonstationary time series prediction
  publication-title: Comput Stat Data Anal
– volume: 19
  year: 2013
  ident: bib29
  article-title: Health assessment and life prediction of cutting tools based on support vector regression
  publication-title: J Intell Manuf
– volume: 7
  start-page: 229
  year: 1996
  end-page: 232
  ident: bib67
  article-title: Confidence interval prediction for neural network models
  publication-title: IEEE Tran Neural Networks
– reference: MacKay, DJC., Gaussian processes-a replacement for supervised neural networks? Tutorial lecture notes for NIPS, UK,
– volume: vol. 7
  start-page: 231
  year: 1995
  end-page: 238
  ident: bib62
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Advances in neural information processing systems
– volume: 95
  start-page: 49
  year: 2010
  end-page: 57
  ident: bib24
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab Eng Syst SafReliab EngSyst Saf
– volume: 27
  start-page: 613
  year: 2013
  end-page: 621
  ident: bib28
  article-title: Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
  publication-title: Renewable Sustainable Energy Rev
– reference: Khawaja, T, Vachtsevanos, G, Wu, B., Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, 2005. In: Annual meeting of the north American Fuzzy Information Processing Society, Ann Arbor, MI; June 22–25, 2005.
– volume: 32
  start-page: 331
  year: 2012
  end-page: 348
  ident: bib33
  article-title: A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods
  publication-title: Mech Syst Sig Process
– volume: 76
  start-page: 167
  year: 2002
  end-page: 180
  ident: bib11
  article-title: A condition-based maintenance policy for stochastically deteriorating systems
  publication-title: Reliab EngSyst Saf
– volume: 45
  start-page: 422
  year: 2013
  end-page: 435
  ident: bib12
  article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes
  publication-title: Qual Reliab Eng
– volume: 34
  start-page: 3090
  year: 2008
  end-page: 3098
  ident: bib6
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert Syst Appl
– volume: 59
  start-page: 1
  year: 1997
  end-page: 23
  ident: bib111
  article-title: Monte Carlo filter using the genetic algorithm operators
  publication-title: J Stat Comput Simul
– volume: 4
  start-page: 46
  year: 2008
  end-page: 55
  ident: bib58
  article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks
  publication-title: Int J Comput Intell
– volume: 22
  start-page: 428
  year: 2011
  end-page: 436
  ident: bib19
  article-title: Health management based on fusion prognostics for avionics systems
  publication-title: J Syst Eng Electron
– volume: 32
  start-page: 203
  year: 2014
  end-page: 212
  ident: bib63
  article-title: Neural network ensembles based on copula methods and distributed multiobjective central force optimization algorithm
  publication-title: Eng Appl Artif Intell
– reference: Kunli M, Yunxin W. Fault diagnosis of rolling element bearing based on vibration frequency analysis. In: Proceedings of the third international conference on measuring technology and mechatronics automation, Shangshai, China; January 6–7, 2011.
– reference: Giurgiutiu V., Current issues in vibration-based fault diagnostics and prognostics. In: SPIE’s ninth annual international symposium on smart structures and materials and seventh annual international symposium on NDE for health monitoring and diagnostics, San Diego, CA; March 17–21, 2002.
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: bib34
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom Intell Lab Syst
– volume: 151
  start-page: 379
  year: 2004
  end-page: 384
  ident: bib42
  article-title: Wavelet neural network approach for fault diagnosis of analogue circuits
  publication-title: IEEE Proc Circuits Devices Syst
– volume: 37
  start-page: 241
  year: 2012
  end-page: 249
  ident: bib52
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renewable Energy
– volume: 7
  start-page: 867
  year: 1995
  end-page: 888
  ident: bib60
  article-title: Methods for combining experts’ probability assessments
  publication-title: Neural Comput
– reference: He, W, Williard, N, Osterman, M, Pecht, M., Prognostics of lithium-ion batteries using extended Kalman filtering. In: Proceedings of IMAPS advanced technology workshop on high reliability microelectronics for military applications, Linthicum Heights, MD, USA; May 2011, pp. 17–19.
– volume: 13
  start-page: 463
  year: 2000
  end-page: 484
  ident: bib69
  article-title: Construction of confidence intervals for neural networks based on least squares estimation
  publication-title: Neural Networks
– volume: 58
  start-page: 303
  year: 2009
  end-page: 310
  ident: bib126
  article-title: Application of blind deconvolution denoising in failure prognosis
  publication-title: IEEE Tran Instrum Meas
– volume: 270
  start-page: 828
  year: 2011
  end-page: 838
  ident: bib109
  article-title: In-situ monitoring and prediction of progressive joint wear using Bayesian statistics
  publication-title: Wear
– reference: .
– volume: 22
  start-page: 713
  year: 2012
  end-page: 722
  ident: bib95
  article-title: Cases for the nugget in modeling computer experiments
  publication-title: Stat Comput
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: bib73
  article-title: Probabilistic neural networks
  publication-title: Neural Networks
– reference: Neal, RM., Bayesian learning for neural networks PhD thesis, University of Toronto, Ontario, Canada, 1995.
– volume: vol. 9
  year: 1997
  ident: bib82
  article-title: Computing with infinite networks
  publication-title: Advances in neural information processing systems
– reference: Wang, WP, Liao, S, Xing, TW., Particle filter for state and parameter estimation in passive ranging. In: IEEE international conference on intelligent computing and intelligent systems. Shanghai, China; 2009.
– reference: An, D, Choi, JH, Kim, NH., A comparison study of methods for parameter estimation in the physics-based prognostics. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu, Hawaii; April 23–26, 2012.
– reference: Yang, L, Kavli, T, Carlin, M, Clausen, S, Groot, PFM., An evaluation of confidence bound estimation methods for neural networks. In: European symposium on intelligent techniques; 2000, Aachen, Germany, September 14–15, 2000.
– reference: Ostafe, D, Neural network hidden layer number determination using pattern recognition techniques. In: Second Romanian-Hungarian joint symposium on applied computational intelligence, Timisoara, Romania; 2005.
– volume: 11
  start-page: 1009
  year: 2000
  end-page: 1016
  ident: bib76
  article-title: Probabilistic neural-network structure determination for pattern classification
  publication-title: IEEE Tran Neural Networks
– reference: Liu, J, Saxena, A, Goebel, K, Saha, B, Wang, W, An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In: Annual conference of the prognostics and health management society, Portland, Oregon; October 10–16, 2010.
– volume: vol. 3
  start-page: 395
  year: 1998
  end-page: 402
  ident: bib119
  article-title: Using the SIR algorithm to simulate posterior distributions
  publication-title: Bayesian statistics
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: bib102
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Trans ASME-J Basic Eng
– year: 2001
  ident: bib104
  article-title: Sequential Monte Carlo methods in practice
– reference: Xing, Y, Williard, N, Tsui, K-L, Pecht, M., A comparative review of prognostics-based reliability methods for lithium batteries. In: Prognostics and system health management conference, Shenzhen, China; May 24–25, 2011.
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: bib14
  article-title: Prognostics and health management design for rotary machinery systems—reviews, methodology and applications
  publication-title: Mech Syst Sig Process
– ident: 10.1016/j.ress.2014.09.014_bib20
– volume: 196
  start-page: 6007
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib17
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– ident: 10.1016/j.ress.2014.09.014_bib43
– ident: 10.1016/j.ress.2014.09.014_bib105
  doi: 10.36001/phmconf.2010.v2i1.1753
– volume: 17
  start-page: 127
  year: 2003
  ident: 10.1016/j.ress.2014.09.014_bib127
  article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2004.08.001
– volume: 2013
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib49
  article-title: Review on methods to fix number of hidden neurons in neural networks
  publication-title: Math Prob Eng
  doi: 10.1155/2013/425740
– volume: 7
  start-page: 6837
  issue: 12
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib51
  article-title: Particle swarm optimization based on back propagation network forecasting exchange rates
  publication-title: Int J Innovative Comput Inf Control
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 10.1016/j.ress.2014.09.014_bib87
  article-title: Design and analysis of computer experiments
  publication-title: Stat Sci
  doi: 10.1214/ss/1177012413
– ident: 10.1016/j.ress.2014.09.014_bib57
  doi: 10.1109/ICIINFS.2008.4798417
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.ress.2014.09.014_bib1
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 9
  start-page: 589
  issue: 4
  year: 1996
  ident: 10.1016/j.ress.2014.09.014_bib55
  article-title: Accelerating backpropagation through dynamic self-adaptation
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00144-1
– volume: 40
  start-page: 273
  issue: 4
  year: 1998
  ident: 10.1016/j.ress.2014.09.014_bib68
  article-title: Prediction intervals for neural networks via nonlinear regression
  publication-title: Technometrics
  doi: 10.2307/1270528
– volume: 62
  start-page: 1
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib4
  article-title: Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.06.025
– ident: 10.1016/j.ress.2014.09.014_bib131
  doi: 10.2514/6.2012-1435
– volume: 270
  start-page: 828
  issue: 11–12
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib109
  article-title: In-situ monitoring and prediction of progressive joint wear using Bayesian statistics
  publication-title: Wear
  doi: 10.1016/j.wear.2011.02.010
– volume: 74
  start-page: 111
  issue: 1
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib94
  article-title: A full scale approximation of covariance functions for large spatial data sets
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2011.01007.x
– ident: 10.1016/j.ress.2014.09.014_bib66
– volume: 49
  start-page: 1965
  issue: 6
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib101
  article-title: Using a simple crack growth model in predicting remaining useful life
  publication-title: J Aircr
  doi: 10.2514/1.C031808
– ident: 10.1016/j.ress.2014.09.014_bib117
– volume: 34
  start-page: 3090
  year: 2008
  ident: 10.1016/j.ress.2014.09.014_bib6
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.06.029
– volume: 53
  start-page: 370
  year: 1763
  ident: 10.1016/j.ress.2014.09.014_bib106
  article-title: An essay towards solving a problem in the doctrine of chances
  publication-title: Philos Trans R Soc London
  doi: 10.1098/rstl.1763.0053
– volume: 30
  start-page: 2
  issue: 1
  year: 2008
  ident: 10.1016/j.ress.2014.09.014_bib130
  article-title: An engineering model of fatigue crack growth under variable amplitude loading
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2007.03.004
– volume: 30
  start-page: 71
  year: 2009
  ident: 10.1016/j.ress.2014.09.014_bib48
  article-title: Neural network architecture selection: can function complexity help?
  publication-title: Neural Proc Lett
  doi: 10.1007/s11063-009-9108-2
– volume: 31
  start-page: 293
  issue: 3–4
  year: 2009
  ident: 10.1016/j.ress.2014.09.014_bib15
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331208092030
– ident: 10.1016/j.ress.2014.09.014_bib103
– ident: 10.1016/j.ress.2014.09.014_bib123
  doi: 10.1109/PHM.2008.4711464
– volume: 58
  start-page: 303
  issue: 2
  year: 2009
  ident: 10.1016/j.ress.2014.09.014_bib126
  article-title: Application of blind deconvolution denoising in failure prognosis
  publication-title: IEEE Tran Instrum Meas
  doi: 10.1109/TIM.2008.2005963
– year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib41
– ident: 10.1016/j.ress.2014.09.014_bib124
– ident: 10.1016/j.ress.2014.09.014_bib86
– volume: 2
  start-page: 1771
  issue: 6
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib120
  article-title: Improved MCMC method for parameter estimation based on marginal probability density function
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-013-0428-9
– ident: 10.1016/j.ress.2014.09.014_bib56
  doi: 10.1109/ICSMC.2006.385301
– volume: 13
  start-page: 283
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib23
  article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.08.031
– ident: 10.1016/j.ress.2014.09.014_bib113
  doi: 10.1109/ICICISYS.2009.5358175
– volume: 46
  start-page: 533
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib88
  article-title: Efficient reliability analysis based on Bayesian framework under input variable and metamodel uncertainties
  publication-title: Struct Multi Optim
  doi: 10.1007/s00158-012-0776-6
– ident: 10.1016/j.ress.2014.09.014_bib93
– ident: 10.1016/j.ress.2014.09.014_bib70
– volume: 17
  start-page: 441
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib45
  article-title: Toward a hybrid approach of primitive cognitive network process and particle swarm optimization neural network for forecasting
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2013.05.057
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 10.1016/j.ress.2014.09.014_bib74
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– volume: 11
  start-page: 1009
  issue: 4
  year: 2000
  ident: 10.1016/j.ress.2014.09.014_bib76
  article-title: Probabilistic neural-network structure determination for pattern classification
  publication-title: IEEE Tran Neural Networks
  doi: 10.1109/72.857781
– volume: 50
  start-page: 281
  issue: 2
  year: 2002
  ident: 10.1016/j.ress.2014.09.014_bib132
  article-title: Particle filters in state space models with the presence of unknown static parameters
  publication-title: IEEE Tran Signal Process
  doi: 10.1109/78.978383
– volume: 16
  start-page: 20
  issue: 2
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib10
  article-title: Ball bearing damage detection using traditional signal processing algorithms
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2013.6495676
– volume: 213
  start-page: 1
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib13
  article-title: Remaining useful life estimation—a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.11.018
– ident: 10.1016/j.ress.2014.09.014_bib16
– year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib79
– volume: 4
  start-page: 46
  issue: 1
  year: 2008
  ident: 10.1016/j.ress.2014.09.014_bib58
  article-title: An improved conjugate gradient based learning algorithm for back propagation neural networks
  publication-title: Int J Comput Intell
– volume: 19
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib29
  article-title: Health assessment and life prediction of cutting tools based on support vector regression
  publication-title: J Intell Manuf
– volume: 82
  start-page: 1032
  issue: 400
  year: 1987
  ident: 10.1016/j.ress.2014.09.014_bib112
  article-title: Non–Gaussian state space modeling of nonstationary time series (with Discussion),
  publication-title: J Am Stat Assoc
– start-page: 1
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib31
  article-title: Residual life estimation based on bivariate non-stationary gamma degradation process
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2013.848452
– ident: 10.1016/j.ress.2014.09.014_bib75
  doi: 10.1117/12.469869
– volume: 82
  start-page: 35
  year: 1960
  ident: 10.1016/j.ress.2014.09.014_bib102
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Trans ASME-J Basic Eng
  doi: 10.1115/1.3662552
– volume: 7
  start-page: 221
  issue: 4
  year: 2007
  ident: 10.1016/j.ress.2014.09.014_bib107
  article-title: A particle filtering approach for on-line failure prognosis in a planetary carrier plate
  publication-title: Int J Fuzzy Logic Intell Syst
  doi: 10.5391/IJFIS.2007.7.4.221
– ident: 10.1016/j.ress.2014.09.014_bib108
  doi: 10.1109/AERO.2011.5747574
– volume: 26
  start-page: 194
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib116
  article-title: Sequential Monte Carlo filters for abruptly changing state estimation
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2010.07.010
– year: 1994
  ident: 10.1016/j.ress.2014.09.014_bib71
– volume: 39
  start-page: 11128
  issue: 21
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib25
  article-title: Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.005
– volume: 2
  start-page: 163
  year: 1999
  ident: 10.1016/j.ress.2014.09.014_bib35
  article-title: Survey of neural transfer functions
  publication-title: Neural Comput Surv
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib18
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2299152
– volume: 20
  start-page: 887
  year: 2009
  ident: 10.1016/j.ress.2014.09.014_bib83
  article-title: Gaussian process time series model for life prognosis of metallic structures
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X08099602
– volume: 59
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.ress.2014.09.014_bib111
  article-title: Monte Carlo filter using the genetic algorithm operators
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659708811843
– volume: 85
  start-page: 528
  issue: 3
  year: 1963
  ident: 10.1016/j.ress.2014.09.014_bib129
  article-title: A critical analysis of crack propagation laws
  publication-title: Trans ASME, J Basic Eng Ser D
  doi: 10.1115/1.3656900
– volume: 6
  start-page: 1289
  issue: 6
  year: 1994
  ident: 10.1016/j.ress.2014.09.014_bib61
  article-title: Boosting and other ensemble methods
  publication-title: Neural Comput
  doi: 10.1162/neco.1994.6.6.1289
– volume: 7
  start-page: 229
  issue: 1
  year: 1996
  ident: 10.1016/j.ress.2014.09.014_bib67
  article-title: Confidence interval prediction for neural network models
  publication-title: IEEE Tran Neural Networks
  doi: 10.1109/72.478409
– volume: 7
  start-page: 985
  year: 1994
  ident: 10.1016/j.ress.2014.09.014_bib44
  article-title: The design and evolution of modular neural network architectures
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80155-8
– ident: 10.1016/j.ress.2014.09.014_bib90
– volume: 35
  start-page: 219
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib32
  article-title: A wiener process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2012.08.016
– volume: 151
  start-page: 379
  issue: 4
  year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib42
  article-title: Wavelet neural network approach for fault diagnosis of analogue circuits
  publication-title: IEEE Proc Circuits Devices Syst
  doi: 10.1049/ip-cds:20040495
– volume: 3
  start-page: 261
  year: 1994
  ident: 10.1016/j.ress.2014.09.014_bib121
  article-title: On Markov Chain Monte Carlo acceleration
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1994.10474644
– volume: 53
  start-page: 1
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib22
  article-title: Remaining useful life prediction of grinding mill liners using an artificial neural network
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2013.05.026
– volume: vol. 1
  start-page: 318
  year: 1986
  ident: 10.1016/j.ress.2014.09.014_bib38
  article-title: Learning internal representations by error propagation
– volume: 63
  start-page: 127
  issue: Part 1
  year: 2001
  ident: 10.1016/j.ress.2014.09.014_bib114
  article-title: Following a moving target-Monte Carlo inference for dynamic Bayesian models
  publication-title: R Stat Soc B
  doi: 10.1111/1467-9868.00280
– volume: 39
  start-page: 43
  year: 1997
  ident: 10.1016/j.ress.2014.09.014_bib34
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 21
  start-page: 824
  year: 2007
  ident: 10.1016/j.ress.2014.09.014_bib7
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2006.02.009
– volume: 22
  start-page: 713
  issue: 3
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib95
  article-title: Cases for the nugget in modeling computer experiments
  publication-title: Stat Comput
  doi: 10.1007/s11222-010-9224-x
– volume: 115
  start-page: 161
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib110
  article-title: Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab
  publication-title: Reliab EngSyst Saf
  doi: 10.1016/j.ress.2013.02.019
– volume: vol. 16
  year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib84
  article-title: Nonstationary covariance functions for Gaussian process regression
– volume: 9
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib53
  article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete
  publication-title: HBRC J
  doi: 10.1016/j.hbrcj.2013.04.001
– volume: 76
  start-page: 167
  issue: 2
  year: 2002
  ident: 10.1016/j.ress.2014.09.014_bib11
  article-title: A condition-based maintenance policy for stochastically deteriorating systems
  publication-title: Reliab EngSyst Saf
  doi: 10.1016/S0951-8320(01)00148-X
– volume: 5
  start-page: 961
  year: 1992
  ident: 10.1016/j.ress.2014.09.014_bib21
  article-title: Forecasting the behavior of multivariate time series using neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80092-9
– volume: 56
  start-page: 4215
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib96
  article-title: The effect of the nugget on Gaussian process emulators of computer models
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2012.04.020
– volume: 32
  start-page: 331
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib33
  article-title: A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2012.05.004
– ident: 10.1016/j.ress.2014.09.014_bib40
  doi: 10.1109/IJCNN.2001.938431
– volume: 3
  start-page: 109
  year: 1990
  ident: 10.1016/j.ress.2014.09.014_bib73
  article-title: Probabilistic neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(90)90049-Q
– ident: 10.1016/j.ress.2014.09.014_bib77
  doi: 10.1109/NAFIPS.2005.1548498
– ident: 10.1016/j.ress.2014.09.014_bib125
– volume: 282
  start-page: 475
  issue: 1–2
  year: 2005
  ident: 10.1016/j.ress.2014.09.014_bib3
  article-title: A review of vibration-based techniques for helicopter transmission diagnostics
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2004.02.058
– ident: 10.1016/j.ress.2014.09.014_bib47
– volume: 34
  start-page: 695
  issue: 1
  year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib46
  article-title: A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2003.811293
– volume: 339
  start-page: 1195
  year: 2003
  ident: 10.1016/j.ress.2014.09.014_bib37
  article-title: Estimating photometric redshifts with artificial neural networks
  publication-title: Mon Not R Astron Soc
  doi: 10.1046/j.1365-8711.2003.06271.x
– year: 2002
  ident: 10.1016/j.ress.2014.09.014_bib39
  article-title: A guide to recurrent neural networks and backpropagation. In: The DALLAS project. Report from the NUTEK-supported project AIS-8: application of data analysis with learning systems, 1999–2001
– ident: 10.1016/j.ress.2014.09.014_bib50
– volume: 121
  start-page: 20
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib54
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.066
– volume: 27
  start-page: 613
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib28
  article-title: Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2013.07.026
– volume: 32
  start-page: 203
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib63
  article-title: Neural network ensembles based on copula methods and distributed multiobjective central force optimization algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.02.009
– volume: 22
  start-page: 428
  issue: 3
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib19
  article-title: Health management based on fusion prognostics for avionics systems
  publication-title: J Syst Eng Electron
  doi: 10.3969/j.issn.1004-4132.2011.03.010
– volume: vol. 15
  start-page: 625
  year: 2003
  ident: 10.1016/j.ress.2014.09.014_bib91
  article-title: Fast sparse Gaussian process methods: the information vector machine
– volume: 266
  start-page: 162
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib97
  article-title: Virtual model validation of complex multiscale systems: applications to nonlinear elastostatics
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2013.07.011
– volume: vol. 7
  start-page: 231
  year: 1995
  ident: 10.1016/j.ress.2014.09.014_bib62
  article-title: Neural network ensembles, cross validation, and active learning
– volume: vol. 6
  start-page: 475
  year: 1998
  ident: 10.1016/j.ress.2014.09.014_bib89
  article-title: Regression and classification using Gaussian process priors
– volume: 49
  start-page: 2818
  issue: 12
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib30
  article-title: Uncertainty identification of damage growth parameters using nonlinear regression
  publication-title: AIAA J
  doi: 10.2514/1.J051268
– ident: 10.1016/j.ress.2014.09.014_bib65
– volume: 7
  start-page: 867
  issue: 5
  year: 1995
  ident: 10.1016/j.ress.2014.09.014_bib60
  article-title: Methods for combining experts’ probability assessments
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.5.867
– volume: 45
  start-page: 422
  issue: 4
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib12
  article-title: Condition-based maintenance for continuously monitored degrading systems with multiple failure modes
  publication-title: Qual Reliab Eng
– volume: vol. 9
  year: 1997
  ident: 10.1016/j.ress.2014.09.014_bib82
  article-title: Computing with infinite networks
– volume: 11
  start-page: 293
  issue: 3
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib122
  article-title: Identification of correlated damage parameters under noise and bias using Bayesian inference
  publication-title: Struct Health Monit
  doi: 10.1177/1475921711424520
– volume: 42
  start-page: 314
  issue: 1–2
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib14
  article-title: Prognostics and health management design for rotary machinery systems—reviews, methodology and applications
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2013.06.004
– volume: 37
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.ress.2014.09.014_bib52
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.06.023
– volume: 95
  start-page: 49
  year: 2010
  ident: 10.1016/j.ress.2014.09.014_bib24
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab Eng Syst SafReliab EngSyst Saf
  doi: 10.1016/j.ress.2009.08.001
– volume: 14
  start-page: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib27
  article-title: Gaussian processes for machine learning
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065704001899
– year: 2001
  ident: 10.1016/j.ress.2014.09.014_bib104
– volume: 1
  start-page: 81
  issue: 1
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib128
  article-title: Robust prognostics concept for gearbox with artificially induced gear crack utilizing acoustic emission
  publication-title: Energy Environ Res
  doi: 10.5539/eer.v1n1p81
– volume: 25
  start-page: 2169
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib9
  article-title: Improvement of damage detection methods based on experimental modal parameters
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2011.01.007
– volume: 91
  start-page: 1390
  year: 2006
  ident: 10.1016/j.ress.2014.09.014_bib98
  article-title: Validation and error estimation of computational models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.035
– volume: 111
  start-page: 217
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib100
  article-title: Quantitative model validation techniques: new insights
  publication-title: Reliab EngSyst Saf
  doi: 10.1016/j.ress.2012.11.011
– volume: 10
  start-page: 857
  year: 2009
  ident: 10.1016/j.ress.2014.09.014_bib92
  article-title: Stable and efficient Gaussian process calculations
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 527
  issue: 4
  year: 1994
  ident: 10.1016/j.ress.2014.09.014_bib2
  article-title: A review by discussion of condition monitoring and fault diagnosis in machine tools
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/0890-6955(94)90083-3
– volume: 13
  start-page: 463
  issue: 4–5
  year: 2000
  ident: 10.1016/j.ress.2014.09.014_bib69
  article-title: Construction of confidence intervals for neural networks based on least squares estimation
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(99)00080-5
– volume: 50
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.ress.2014.09.014_bib115
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach Learn
  doi: 10.1023/A:1020281327116
– ident: 10.1016/j.ress.2014.09.014_bib26
– volume: vol. 3
  start-page: 395
  year: 1998
  ident: 10.1016/j.ress.2014.09.014_bib119
  article-title: Using the SIR algorithm to simulate posterior distributions
– volume: 22
  start-page: 1341
  issue: 9
  year: 2011
  ident: 10.1016/j.ress.2014.09.014_bib78
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Tran Neural Networks
  doi: 10.1109/TNN.2011.2162110
– year: 2006
  ident: 10.1016/j.ress.2014.09.014_bib81
– year: 2003
  ident: 10.1016/j.ress.2014.09.014_bib80
– volume: 6
  year: 2014
  ident: 10.1016/j.ress.2014.09.014_bib5
  article-title: Applications of laser diagnostics to thermal power plants and engines
  publication-title: Appl Therm Eng
– ident: 10.1016/j.ress.2014.09.014_bib8
  doi: 10.1109/ICMTMA.2011.337
– volume: 121
  start-page: 498
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib59
  article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.024
– volume: 112
  start-page: 120
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib72
  article-title: Quantifying uncertainties of neural network-based electricity price forecasts
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.05.075
– ident: 10.1016/j.ress.2014.09.014_bib36
  doi: 10.36001/phmconf.2010.v2i1.1896
– volume: 8
  start-page: 283
  issue: 3
  year: 1997
  ident: 10.1016/j.ress.2014.09.014_bib64
  article-title: Optimal ensemble averaging of neural networks
  publication-title: Network Comput Neural Syst
  doi: 10.1088/0954-898X/8/3/004
– volume: 7
  start-page: 12
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib99
  article-title: Verification and validation of simulation models
  publication-title: J Simul
  doi: 10.1057/jos.2012.20
– volume: 47
  start-page: 705
  year: 2004
  ident: 10.1016/j.ress.2014.09.014_bib85
  article-title: Gaussian process for nonstationary time series prediction
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2004.02.006
– volume: 53
  start-page: 805
  year: 2013
  ident: 10.1016/j.ress.2014.09.014_bib118
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2012.12.004
SSID ssj0004957
Score 2.587537
SecondaryResourceType review_article
Snippet This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 223
SubjectTerms Algorithms
Applied sciences
Bayesian inference
Bias
Complexity
Data-driven prognostics
Exact sciences and technology
Fatigue failure
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Gaussian process regression
Mathematics
Neural network
Neural networks
Noise
Operational research and scientific management
Operational research. Management science
Parametric inference
Particle filter
Physics
Physics-based prognostics
Probability and statistics
Reliability engineering
Reliability theory. Replacement problems
Sampling theory, sample surveys
Sciences and techniques of general use
Solid mechanics
Statistics
Structural and continuum mechanics
Title Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
URI https://dx.doi.org/10.1016/j.ress.2014.09.014
https://www.proquest.com/docview/1651454583
Volume 133
WOSCitedRecordID wos000345469600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BClIrxCMFER7VInGLFtleP49RVZQADT0UyM3YuzZQtXYUp1X598x41o7digIHLk6yju1o58u8duZbxl6D0Qwt6UnhSUcK5JgSqRUpkaSJclSYh1HdX_H5QzCfh4tFdGRWTKt6O4GgKMLLy2j5X0UNYyBsbJ39B3G3N4UBeA9ChyOIHY5_JXhiIMKpL6lgpa4krOr9bjAvgDWhQq9Qy2ExOqU2KoHmTNflWkVpuJtPv5WrH-vvZ6YDzhCXdt1ZLGgmou-f42zDbFjjiTiix1WSG6qR2l-efJmPJ-3yz_vZIan4s02TxP7044zy-qWYlt2sBHVkUpLMWPReptEWoDisntKVsqs2qefYWGCHKFGuKXfKM5y8wTwEFuURQy31oPaZtK9YuLbu0IF4P3D88DbbcgIIpQZsazI7WLzbdNJGxA3b_GTTZkUVgVef-ztX5t4yqUDKOe2Mcs3I157L8UN234QcfEJQecRuZcWQPTDhBzfKvRqynQ43JXw6bAl94dzdI4LJkG1jeELs3rvsaws2bsDGAWy8BRvvgI3DiR7YeAdsfAM2jmDjBmyP2ae3B8f7U2H27BBK-nItMje0FURtSeBHqZ1pncggCjMdBjJVVpTbCvxnG9wmrRI7gmHlwjx7TqaTVDs6l0_YoCiL7CnjqZU7eS5drdLMReq9FNeYHU_7oS1dV46Y3Ux_rAyhPe6rcho3lYsnMYosRpHFVhTDy4iN22uWROdy47e9RqqxcUjJ0YwBkjdet9eDQPuoBn8j9qrBRAzqHNfokiIrz6vY9iGCwcVs-exPN3nOtvGfR_nAF2ywXp1nL9kddQEgWO0ZZP8C9DbDFg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+options+for+selecting+data-driven+or+physics-based+prognostics+algorithms+with+reviews&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=DAWN+AN&rft.au=KIM%2C+Nam+H&rft.au=CHOI%2C+Joo-Ho&rft.date=2015&rft.pub=Elsevier&rft.issn=0951-8320&rft.volume=133&rft.spage=223&rft.epage=236&rft_id=info:doi/10.1016%2Fj.ress.2014.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=28887268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon