Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness

We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameteriz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 84; číslo 2; s. 379 - 404
Hlavní autori: Dörfler, Julian, Roth, Marc, Schmitt, Johannes, Wellnitz, Philip
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2022
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the problem # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property Φ . It is shown that, given any graph property Φ that distinguishes independent sets from bicliques, # I N D S U B ( Φ ) is hard for the class # W [ 1 ] , i.e., the parameterized counting equivalent of N P . Under additional suitable density conditions on Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen # W [ 1 ] -hardness by establishing that # I N D S U B ( Φ ) cannot be solved in time f ( k ) · n o ( k ) for any computable function f , unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-021-00894-9