Existence of Almost Greedy Bases in Mixed-Norm Sequence and Matrix Spaces, Including Besov Spaces
We prove that the sequence spaces ℓ p ⊕ ℓ q and the spaces of infinite matrices ℓ p ( ℓ q ) , ℓ q ( ℓ p ) and ( ⨁ n = 1 ∞ ℓ p n ) ℓ q , which are isomorphic to certain Besov spaces, have an almost greedy basis whenever 0 < p < 1 < q < ∞ . More precisely, we custom-build almost greedy bas...
Uloženo v:
| Vydáno v: | Constructive approximation Ročník 60; číslo 2; s. 253 - 283 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0176-4276, 1432-0940 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that the sequence spaces
ℓ
p
⊕
ℓ
q
and the spaces of infinite matrices
ℓ
p
(
ℓ
q
)
,
ℓ
q
(
ℓ
p
)
and
(
⨁
n
=
1
∞
ℓ
p
n
)
ℓ
q
, which are isomorphic to certain Besov spaces, have an almost greedy basis whenever
0
<
p
<
1
<
q
<
∞
. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the Dilworth–Kalton–Kutzarova method from Dilworth et al. (Stud Math 159(1):67–101, 2003), which was originally designed for constructing almost greedy bases in Banach spaces, to make it valid for direct sums of mixed-normed spaces with nonlocally convex components. Additionally, we prove that the fundamental functions of all almost greedy bases of these spaces grow as
(
m
1
/
q
)
m
=
1
∞
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0176-4276 1432-0940 |
| DOI: | 10.1007/s00365-023-09662-0 |