LSQR iterative method for generalized coupled Sylvester matrix equations

An iterative method is proposed to solve generalized coupled Sylvester matrix equations, based on a matrix form of the least-squares QR-factorization (LSQR) algorithm. By this iterative method on the selection of special initial matrices, we can obtain the minimum Frobenius norm solutions or the min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling Jg. 36; H. 8; S. 3545 - 3554
Hauptverfasser: Li, Sheng-Kun, Huang, Ting-Zhu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2012
Schlagworte:
ISSN:0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An iterative method is proposed to solve generalized coupled Sylvester matrix equations, based on a matrix form of the least-squares QR-factorization (LSQR) algorithm. By this iterative method on the selection of special initial matrices, we can obtain the minimum Frobenius norm solutions or the minimum Frobenius norm least-squares solutions over some constrained matrices, such as symmetric, generalized bisymmetric and (R,S)-symmetric matrices. Meanwhile, the optimal approximate solutions to the given matrices can be derived by solving the corresponding new generalized coupled Sylvester matrix equations. Finally, numerical examples are given to illustrate the effectiveness of the present method.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0307-904X
DOI:10.1016/j.apm.2011.10.030