The probabilistic model checker Storm
We present the probabilistic model checker Storm . Storm supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes. Storm has three major distinguishing features. It supports multiple input languages for Markov models, including the Jani and...
Gespeichert in:
| Veröffentlicht in: | International journal on software tools for technology transfer Jg. 24; H. 4; S. 589 - 610 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1433-2779, 1433-2787 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present the probabilistic model checker
Storm
.
Storm
supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes.
Storm
has three major distinguishing features. It supports multiple input languages for Markov models, including the
Jani
and
Prism
modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating
Storm
’s fast and scalable algorithms. This paper reports on the main features of
Storm
and explains how to effectively use them. A description is provided of the main distinguishing functionalities of
Storm
. Finally, an empirical evaluation of different configurations of
Storm
on the QComp 2019 benchmark set is presented. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1433-2779 1433-2787 |
| DOI: | 10.1007/s10009-021-00633-z |