A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Uložené v:
| Vydané v: | The Ramanujan journal Ročník 56; číslo 2; s. 585 - 596 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!