A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations

We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 56; číslo 2; s. 585 - 596
Hlavný autor: Patel, Vandita
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2021
Springer Nature B.V
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00408-9