A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Uložené v:
| Vydané v: | The Ramanujan journal Ročník 56; číslo 2; s. 585 - 596 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We describe a computationally efficient approach to resolving equations of the form
C
1
x
2
+
C
2
=
y
n
in coprime integers, for fixed values of
C
1
,
C
2
subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-021-00408-9 |