Search-based fairness testing for regression-based machine learning systems

Context Machine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These systems are trained with data that is often biased, resulting in biased behaviour. To address this issue, fairness testing approaches have been...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Empirical software engineering : an international journal Ročník 27; číslo 3
Hlavní autori: Perera, Anjana, Aleti, Aldeida, Tantithamthavorn, Chakkrit, Jiarpakdee, Jirayus, Turhan, Burak, Kuhn, Lisa, Walker, Katie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2022
Springer Nature B.V
Predmet:
ISSN:1382-3256, 1573-7616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Context Machine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These systems are trained with data that is often biased, resulting in biased behaviour. To address this issue, fairness testing approaches have been proposed to test ML systems for fairness, which predominantly focus on assessing classification-based ML systems. These methods are not applicable to regression-based systems, for example, they do not quantify the magnitude of the disparity in predicted outcomes, which we identify as important in the context of regression-based ML systems. Method: We conduct this study as design science research. We identify the problem instance in the context of emergency department (ED) wait-time prediction. In this paper, we develop an effective and efficient fairness testing approach to evaluate the fairness of regression-based ML systems. We propose fairness degree, which is a new fairness measure for regression-based ML systems, and a novel search-based fairness testing (SBFT) approach for testing regression-based machine learning systems. We apply the proposed solutions to ED wait-time prediction software. Results: We experimentally evaluate the effectiveness and efficiency of the proposed approach with ML systems trained on real observational data from the healthcare domain. We demonstrate that SBFT significantly outperforms existing fairness testing approaches, with up to 111% and 190% increase in effectiveness and efficiency of SBFT compared to the best performing existing approaches. Conclusion: These findings indicate that our novel fairness measure and the new approach for fairness testing of regression-based ML systems can identify the degree of fairness in predictions, which can help software teams to make data-informed decisions about whether such software systems are ready to deploy. The scientific knowledge gained from our work can be phrased as a technological rule; to measure the fairness of the regression-based ML systems in the context of emergency department wait-time prediction use fairness degree and search-based techniques to approximate it.
AbstractList ContextMachine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These systems are trained with data that is often biased, resulting in biased behaviour. To address this issue, fairness testing approaches have been proposed to test ML systems for fairness, which predominantly focus on assessing classification-based ML systems. These methods are not applicable to regression-based systems, for example, they do not quantify the magnitude of the disparity in predicted outcomes, which we identify as important in the context of regression-based ML systems.Method:We conduct this study as design science research. We identify the problem instance in the context of emergency department (ED) wait-time prediction. In this paper, we develop an effective and efficient fairness testing approach to evaluate the fairness of regression-based ML systems. We propose fairness degree, which is a new fairness measure for regression-based ML systems, and a novel search-based fairness testing (SBFT) approach for testing regression-based machine learning systems. We apply the proposed solutions to ED wait-time prediction software.Results:We experimentally evaluate the effectiveness and efficiency of the proposed approach with ML systems trained on real observational data from the healthcare domain. We demonstrate that SBFT significantly outperforms existing fairness testing approaches, with up to 111% and 190% increase in effectiveness and efficiency of SBFT compared to the best performing existing approaches.Conclusion:These findings indicate that our novel fairness measure and the new approach for fairness testing of regression-based ML systems can identify the degree of fairness in predictions, which can help software teams to make data-informed decisions about whether such software systems are ready to deploy. The scientific knowledge gained from our work can be phrased as a technological rule; to measure the fairness of the regression-based ML systems in the context of emergency department wait-time prediction use fairness degree and search-based techniques to approximate it.
Context Machine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These systems are trained with data that is often biased, resulting in biased behaviour. To address this issue, fairness testing approaches have been proposed to test ML systems for fairness, which predominantly focus on assessing classification-based ML systems. These methods are not applicable to regression-based systems, for example, they do not quantify the magnitude of the disparity in predicted outcomes, which we identify as important in the context of regression-based ML systems. Method: We conduct this study as design science research. We identify the problem instance in the context of emergency department (ED) wait-time prediction. In this paper, we develop an effective and efficient fairness testing approach to evaluate the fairness of regression-based ML systems. We propose fairness degree, which is a new fairness measure for regression-based ML systems, and a novel search-based fairness testing (SBFT) approach for testing regression-based machine learning systems. We apply the proposed solutions to ED wait-time prediction software. Results: We experimentally evaluate the effectiveness and efficiency of the proposed approach with ML systems trained on real observational data from the healthcare domain. We demonstrate that SBFT significantly outperforms existing fairness testing approaches, with up to 111% and 190% increase in effectiveness and efficiency of SBFT compared to the best performing existing approaches. Conclusion: These findings indicate that our novel fairness measure and the new approach for fairness testing of regression-based ML systems can identify the degree of fairness in predictions, which can help software teams to make data-informed decisions about whether such software systems are ready to deploy. The scientific knowledge gained from our work can be phrased as a technological rule; to measure the fairness of the regression-based ML systems in the context of emergency department wait-time prediction use fairness degree and search-based techniques to approximate it.
ArticleNumber 79
Author Aleti, Aldeida
Turhan, Burak
Kuhn, Lisa
Walker, Katie
Jiarpakdee, Jirayus
Perera, Anjana
Tantithamthavorn, Chakkrit
Author_xml – sequence: 1
  givenname: Anjana
  orcidid: 0000-0002-5080-9276
  surname: Perera
  fullname: Perera, Anjana
  email: Anjana.Perera@monash.edu
  organization: Faculty of Information Technology, Monash University
– sequence: 2
  givenname: Aldeida
  surname: Aleti
  fullname: Aleti, Aldeida
  organization: Faculty of Information Technology, Monash University
– sequence: 3
  givenname: Chakkrit
  surname: Tantithamthavorn
  fullname: Tantithamthavorn, Chakkrit
  organization: Faculty of Information Technology, Monash University
– sequence: 4
  givenname: Jirayus
  surname: Jiarpakdee
  fullname: Jiarpakdee, Jirayus
  organization: Faculty of Information Technology, Monash University
– sequence: 5
  givenname: Burak
  surname: Turhan
  fullname: Turhan, Burak
  email: burak.turhan@oulu.fi
  organization: Faculty of Information Technology and Electrical Engineering, University of Oulu
– sequence: 6
  givenname: Lisa
  surname: Kuhn
  fullname: Kuhn, Lisa
  organization: Faculty of Medicine, Nursing and Health Sciences, Monash University
– sequence: 7
  givenname: Katie
  surname: Walker
  fullname: Walker, Katie
  organization: Faculty of Medicine, Nursing and Health Sciences, Monash University
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYjb47MRORlQBRVRiAGbLdi5tqtYpdjr07XFJJSSGTj6dvu9890_IyHceCbkFdg-MqYcITMqcMs4pMABJ1QUZQ6EEVRLkKNWi5FTwQl6RSYxrxlil8mJM3j7QBLei1kSss8a0wWOMWY-xb_0ya7qQBVyG1Gs7f6K2xq1aj9kmqf5IxUPscRuvyWVjNhFvTu-UfD0_fc7mdPH-8jp7XFAnpOipA1cy0eSqcLZ0pamdEBJTyykLYEQDznKBFivLayPQVMpVDYKFitXGSjEld8PcXei-92lTve72wacvNZd5IaDkpUpUOVAudDEGbLRre9OnM_pg2o0Gpo_R6SE6naLTv9Hpo8r_qbvQbk04nJfEIMUE-yWGv63OWD9fNYRn
CitedBy_id crossref_primary_10_1007_s10664_023_10402_y
crossref_primary_10_1109_MS_2024_3477014
crossref_primary_10_1007_s10664_023_10419_3
crossref_primary_10_1016_j_infsof_2023_107390
crossref_primary_10_1145_3616865
crossref_primary_10_1007_s10664_023_10409_5
crossref_primary_10_1145_3719006
crossref_primary_10_1016_j_infsof_2025_107678
crossref_primary_10_1145_3762170
crossref_primary_10_1007_s13369_025_10276_w
crossref_primary_10_1145_3737697
crossref_primary_10_1007_s10270_025_01277_2
Cites_doi 10.1109/RE.2019.00050
10.1016/j.hlc.2020.06.025
10.1007/978-3-030-32489-6_5
10.35680/2372-0247.1090
10.1007/s10115-011-0463-8
10.1002/stvr.1486
10.1016/j.jemermed.2011.01.018
10.1145/3238147.3238165
10.1007/s11739-014-1154-8
10.1109/ICST.2019.00022
10.1145/1068009.1068185
10.1109/MSPEC.2016.7473150
10.1109/TSE.2005.12
10.2307/4093259
10.1145/2931037.2931054
10.1145/3287560.3287598
10.1007/978-3-319-99241-9_1
10.1145/3097983.3098095
10.1145/3368089.3409704
10.1023/A:1008119029962
10.1186/s12889-016-3954-4
10.1145/3278721.3278779
10.1016/j.infsof.2012.03.009
10.1038/d41586-019-03228-6
10.1145/3468264.3468537
10.1145/2020408.2020488
10.1109/TIFS.2012.2214212
10.1109/ICSE43902.2021.00129
10.1111/1742-6723.13640
10.1145/3338906.3338937
10.1145/3106237.3106277
10.1016/S0140-6736(21)00684-X
10.1109/ICDMW.2011.83
10.1109/TSE.1980.230492
10.1609/aaai.v33i01.33017801
10.1109/ICST.2015.7102604
10.1016/j.ijcard.2016.06.244
10.1101/2021.03.19.21253921
10.1016/j.jacc.2017.05.024
10.18653/v1/W17-1606
10.1109/EuroSP.2017.29
10.1016/j.infsof.2018.08.009
10.1145/2090236.2090255
10.1007/978-3-540-24855-2_160
10.1145/2939672.2939778
10.5694/mja15.00812
10.1002/clc.22938
10.1016/j.annemergmed.2021.04.009
10.1145/2783258.2783311
10.1109/ICST.2013.51
10.1002/stvr.294
10.1145/3377811.3380331
10.1161/CIR.0000000000000381
10.3917/hori.005.0017
10.1161/CIR.0000000000000351
10.1145/3368089.3409697
10.1145/230538.230561
10.1145/3324884.3416612
10.1147/JRD.2019.2942287
10.1007/978-3-319-39931-7_9
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-022-10116-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_022_10116_7
GrantInformation_xml – fundername: University of Oulu including Oulu University Hospital
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-c1c803f475cb8c8adc336e803c7b11a3f1cb23ebe9b2da3ea97c9fe1b190dab63
IEDL.DBID BENPR
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776227600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 15:56:31 EST 2025
Sat Nov 29 05:37:46 EST 2025
Tue Nov 18 22:37:45 EST 2025
Fri Feb 21 02:46:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Software testing
Search-based software testing
Software fairness
Fairness testing
Bias
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-c1c803f475cb8c8adc336e803c7b11a3f1cb23ebe9b2da3ea97c9fe1b190dab63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5080-9276
OpenAccessLink https://link.springer.com/10.1007/s10664-022-10116-7
PQID 2645318287
PQPubID 326341
ParticipantIDs proquest_journals_2645318287
crossref_citationtrail_10_1007_s10664_022_10116_7
crossref_primary_10_1007_s10664_022_10116_7
springer_journals_10_1007_s10664_022_10116_7
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang J M, Harman M (2021) ’ignorance and prejudice’in software fairness. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, pp 1436–1447
Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias. Propublica
López-IbánezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: Iterated racing for automatic algorithm configurationOper Res Perspect2016343583579175
Bendick M (2007) Situation Testing for Employment Discrimination in the United States of America. [Online; accessed 29-November-2021]. [Online]. Available: https://www.cairn.info/revue-horizons-strategiques-2007-3-page-17.htmhttps://www.cairn.info/revue-horizons-strategiques-2007-3-page-17.htm
Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: A critical review of fair machine learning. arXiv:1808.00023
Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 625–635
Feldman M, Friedler S A, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 259–268
HardtMPriceESrebroNEquality of opportunity in supervised learningAdv Neural Inf Process Syst20162933153323
Ingold D, Soper S (2016) Amazon doesn’t consider the race of its customers. should it? [Online; accessed 14-October-2020]. [Online]. Available: https://www.bloomberg.com/graphics/2016-amazon-same-day
Kamishima T, Akaho S, Sakuma J (2011) Fairness-aware learning through regularization approach. In: 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, pp 643–650
Ingold D, Soper S (2016) Amazon doesn’t consider the race of its customers. should it? Bloomberg News
StricklandEDoc bot preps for the orIEEE Spectr2016536326010.1109/MSPEC.2016.7473150
Olson P (2011) CNN Money, The algorithm that beats your bank manager. http://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beats-your-bank-manager/#cd84e4f77ca8, [Accessed 9/11/2020]
LakhotiaKHarmanMGrossHAustin: An open source tool for search based software testing of c programsInf Softw Technol201355111212510.1016/j.infsof.2012.03.009
McSweeneyJCRosenfeldAGAbelWMBraunLTBurkeLEDaughertySLFletcherGFGulatiMMehtaLSPetteyCReckelhoffJFPreventing and experiencing ischemic heart disease as a woman: State of the scienceCirculation2016133131302133110.1161/CIR.0000000000000381[Online]. Available: https://doi.org/10.1161/CIR.0000000000000381
BellamyRKEDeyKHindMHoffmanSCHoudeSKannanKLohiaPMartinoJMehtaSMojsilovićAAi fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J Res Dev2019634/54110.1147/JRD.2019.2942287
Berk R, Heidari H, Jabbari S, Joseph M, Kearns M, Morgenstern J, Neel S, Roth A (2017) A convex framework for fair regression. arXiv:1706.02409
Binns R (2018) Fairness in machine learning: Lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency. PMLR, pp 149–159
McMinnPSearch-based software test data generation: a surveySoftw Test Verif Reliab200414210515610.1002/stvr.294
Grgic-Hlaca N, Zafar M B, Gummadi K P, Weller A (2016) The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, vol 1, p 2
Mao K, Harman M, Jia Y (2016) Sapienz: Multi-objective automated testing for android applications. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp 94–105
Panichella A, Kifetew F M, Tonella P (2015) Reformulating branch coverage as a many-objective optimization problem. In: 2015 IEEE 8th international conference on software testing, verification and validation (ICST). IEEE, pp 1–10
Caton S, Haas C (2020) Fairness in machine learning: A survey
Zhang L, Wu Y, Wu X (2016) Situation testing-based discrimination discovery: A causal inference approach
DieterichWMendozaCBrennanTCompas risk scales: Demonstrating accuracy equity and predictive parityNorthpoint Inc201677.41
CortellessaVGoseva-PopstojanovaKAppukkuttyKGuedemARHassanAElnaggarRAbdelmoezWAmmarHHModel-based performance risk analysisIEEE Trans Softw Eng200531132010.1109/TSE.2005.12
Sharma A, Wehrheim H (2019) Testing machine learning algorithms for balanced data usage. In: 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). IEEE, pp 125–135
Ledford H (2019) Millions of black people affected by racial bias in health-care algorithms. [Online; accessed 7-August-2021]. [Online]. Available: https://www.nature.com/articles/d41586-019-03228-6
Di SommaSPaladinoLVaughanLLalleIMagriniLMagnantiMOvercrowding in emergency department: an international issueInternal Emerg Med201510217117510.1007/s11739-014-1154-8[Online]. Available: https://doi.org/10.1007/s11739-014-1154-8
ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftw Test Verif Reliab201424321925010.1002/stvr.1486
Barocas S, Hardt M, Narayanan A (2018) Fairness and machine learning. fairmlbook.org
MehtaLSBeckieTMDeVonHAGrinesCLKrumholzHMJohnsonMNLindleyKJVaccarinoVWangTYWatsonKEWengerNKAcute myocardial infarction in womenCirculation2016133991694710.1161/CIR.0000000000000351[Online]. Available: https://doi.org/10.1161/CIR.0000000000000351
Corbett-Davies S, Pierson E, Feller A, Goel S, Huq A (2017) Algorithmic decision making and the cost of fairness. In: Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pp 797–806
JuergensCPDabinBFrenchJKKritharidesLHyunKKilianJChewDerekPBBriegerDEnglish as a second language and outcomes of patients presenting with acute coronary syndromes: results from the concordance registryMed J Aust2016204623923910.5694/mja15.00812[Online]. Available: https://doi.org/10.5694/mja15.00812
FriedmanBNissenbaumHBias in computer systemsACM Trans Inf Syst199614333034710.1145/230538.230561
Horkoff J (2019) Non-functional requirements for machine learning: Challenges and new directions. In: 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE, pp 386–391
Mattioli D (2012) On Orbitz, Mac Users Steered to Pricier Hotels. [Online; accessed 9-January-2020]. [Online]. Available: http://www.wsj.com/articles/SB10001424052702304458604577488822667325882
Galhotra S, Brun Y, Meliou A (2017) Fairness testing: testing software for discrimination. In: Joint Meeting on Foundations of Software Engineering (FSE). ACM, pp 498–510
Chakraborty J, Majumder S, Yu Z, Menzies T (2020) Fairway: A way to build fair ml software. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 654–665
Zhang P, Wang J, Sun J, Dong G, Wang X, Wang X, Dong J S, Dai T (2020) White-box fairness testing through adversarial sampling. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp 949–960
RamamoorthyCVHoGSPerformance evaluation of asynchronous concurrent systems using petri netsIEEE Trans Softw Eng1980544044958537410.1109/TSE.1980.230492
Bishop P G, Bloomfield R E (2002) Worst case reliability prediction based on a prior estimate of residual defects. In: 13th International Symposium on Software Reliability Engineering, 2002. Proceedings. IEEE, pp 295–303
Ferral K Wisconsin supreme court allows state to continue using computer program to assist in sentencing. the capital times. [Online; accessed 9-January- 2020]. [Online]. Available: http://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.htmlhttp://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.htmlhttp://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.html
Mahdawi A (2018) Is your friend getting a cheaper Uber fare than you are? [Online; accessed 7-August-2021]. [Online]. Available: https://www.theguardian.com/commentisfree/2018/apr/13/uber-lyft-prices-personalized-datahttps://www.theguardian.com/commentisfree/2018/apr/13/uber-lyft-prices-personalized-data
Selbst A D, Boyd D, Friedler S A, Venkatasubramanian S, Vertesi J (2019) Fairness and abstraction in sociotechnical systems. In: Proceedings of the conference on fairness, accountability, and transparency, pp 59–68
Hardawar D (2012) Staples, home depot, and other online stores change prices based on your location. [Online; accessed 14-October-2020]. [Online]. Available: https://venturebeat.com/2012/12/24/staples-online-stores-price-changes/https://venturebeat.com/2012/12/24/staples-online-stores-price-changes
Johnson B, Bartola J, Angell R, Keith K, Witty S, Giguere S J, Brun Y (2020) Fairkit, fairkit, on the wall, who’s the fairest of them all? supporting data scientists in training fair models. arXiv:2012.09951
Chiappa S (2019) Path-specific counterfactual fairness. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 7801–7808
PanichellaAKifetewFMTonellaPA large scale empirical comparison of state-of-the-art search-based test case generatorsInf Softw Technol201810423625610.1016/j.infsof.2018.08.009
Mullainathan S (2019) Biased algorithms are easier to fix than biased people, www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html, accessed: 10/12/2019.
PuschnerPBurnsAGuest editorial: A review of worst-case execution-time analysisReal-Time Syst2000182-311512810.1023/A:1008119029962
Bairey MerzCNAndersenHSpragueEBurnsAKeidaMWalshMNGreenbergerPCampbellSPollinIMcCulloughCBrownNJenkinsMRedbergRJohnsonPRobinsonBKnowledge, attitudes, and beliefs regarding
M López-Ibánez (10116_CR46) 2016; 3
S Shah (10116_CR65) 2015; 2
OA Soremekun (10116_CR69) 2011; 41
K Wechkunanukul (10116_CR82) 2016; 220
F Kamiran (10116_CR41) 2012; 33
K Lakhotia (10116_CR44) 2013; 55
V Cortellessa (10116_CR21) 2005; 31
10116_CR27
10116_CR28
10116_CR25
10116_CR26
10116_CR67
BF Klare (10116_CR43) 2012; 7
JC McSweeney (10116_CR52) 2016; 133
10116_CR22
10116_CR66
10116_CR63
10116_CR20
10116_CR64
10116_CR62
W Dieterich (10116_CR24) 2016; 7
J Sun (10116_CR73) 2017; 17
S Di Somma (10116_CR23) 2015; 10
10116_CR8
10116_CR9
CP Juergens (10116_CR40) 2016; 204
M Hardt (10116_CR34) 2016; 29
CV Ramamoorthy (10116_CR61) 1980; 5
LS Mehta (10116_CR54) 2016; 133
RKE Bellamy (10116_CR7) 2019; 63
10116_CR38
10116_CR39
A Vargha (10116_CR78) 2000; 25
10116_CR36
10116_CR37
10116_CR35
10116_CR79
CN Bairey Merz (10116_CR5) 2017; 70
10116_CR32
A Panichella (10116_CR58) 2018; 104
10116_CR33
10116_CR77
10116_CR30
10116_CR74
10116_CR31
10116_CR75
10116_CR72
10116_CR80
JA Udell (10116_CR76) 2018; 41
E Strickland (10116_CR71) 2016; 53
10116_CR49
10116_CR47
10116_CR48
10116_CR45
10116_CR87
10116_CR3
P McMinn (10116_CR51) 2004; 14
10116_CR88
10116_CR6
10116_CR85
10116_CR42
10116_CR86
10116_CR83
10116_CR84
10116_CR2
P Puschner (10116_CR60) 2000; 18
10116_CR81
10116_CR1
A Arcuri (10116_CR4) 2014; 24
RB Siegel (10116_CR68) 2003; 117
10116_CR18
10116_CR19
10116_CR16
10116_CR17
J Stehli (10116_CR70) 2021; 30
10116_CR14
10116_CR15
10116_CR59
10116_CR12
10116_CR56
10116_CR13
10116_CR57
10116_CR10
10116_CR11
10116_CR55
10116_CR53
10116_CR50
B Friedman (10116_CR29) 1996; 14
References_xml – reference: Zhang J M, Harman M (2021) ’ignorance and prejudice’in software fairness. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, pp 1436–1447
– reference: Biswas S, Rajan H (2020) Do the machine learning models on a crowd sourced platform exhibit bias? an empirical study on model fairness. arXiv:2005.12379
– reference: Feldman M, Friedler S A, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 259–268
– reference: Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of the 3rd innovations in theoretical computer science conference, pp 214–226
– reference: Walker K, Stephenson M, Loupis A, Ben-Meir M, Joe K, Stephenson M, Lowthian J, Yip B, Wu E, Hansen K et al (2020) Displaying emergency patient estimated wait times: A multi-centre, qualitative study of patient, community, paramedic and health administrator perspectives. Emergency Medicine Australasia
– reference: Udeshi S, Arora P, Chattopadhyay S (2018) Automated directed fairness testing. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pp 98–108
– reference: SoremekunOATakayesuJKBohanSJFramework for analyzing wait times and other factors that impact patient satisfaction in the emergency departmentJ Emerg Med201141668669210.1016/j.jemermed.2011.01.018
– reference: Berk R, Heidari H, Jabbari S, Joseph M, Kearns M, Morgenstern J, Neel S, Roth A (2017) A convex framework for fair regression. arXiv:1706.02409
– reference: Perera A, Aleti A, Böhme M, Turhan B (2020) Defect prediction guided search-based software testing. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. ACM
– reference: SiegelRBEquality talk: Antisubordination and anticlassification values in constitutional struggles over brownHarv L Rev2003117147010.2307/4093259
– reference: Sharma A, Wehrheim H (2019) Testing machine learning algorithms for balanced data usage. In: 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). IEEE, pp 125–135
– reference: Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 625–635
– reference: Hern A (2020) Twitter apologises for ’racist’ image-cropping algorithm. [Online; accessed 7-August-2021]. [Online]. Available: https://www.theguardian.com/technology/2020/sep/21/twitter-apologises-for-racist-image-cropping-algorithmhttps://www.theguardian.com/technology/2020/sep/21/twitter-apologises-for-racist-image-cropping-algorithm
– reference: PuschnerPBurnsAGuest editorial: A review of worst-case execution-time analysisReal-Time Syst2000182-311512810.1023/A:1008119029962
– reference: Vogel B, Acevedo M, Appelman Y, Merz C N B, Chieffo A, Figtree G A, Guerrero M, Kunadian V, Lam CSP, Maas AHEM et al (2021) The lancet women and cardiovascular disease commission: reducing the global burden by 2030. The Lancet
– reference: MehtaLSBeckieTMDeVonHAGrinesCLKrumholzHMJohnsonMNLindleyKJVaccarinoVWangTYWatsonKEWengerNKAcute myocardial infarction in womenCirculation2016133991694710.1161/CIR.0000000000000351[Online]. Available: https://doi.org/10.1161/CIR.0000000000000351
– reference: Sharkey A (2020) Care robots for the elderly are dangerous. [Online; accessed 14-October-2020]. [Online]. Available: https://www.telegraph.co.uk/science/2016/05/30/care-bots-for-the-elderly-are-dangerous-warns-artificial-intelli
– reference: CortellessaVGoseva-PopstojanovaKAppukkuttyKGuedemARHassanAElnaggarRAbdelmoezWAmmarHHModel-based performance risk analysisIEEE Trans Softw Eng200531132010.1109/TSE.2005.12
– reference: Zhang B H, Lemoine B, Mitchell M (2018) Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp 335–340
– reference: DieterichWMendozaCBrennanTCompas risk scales: Demonstrating accuracy equity and predictive parityNorthpoint Inc201677.41
– reference: Tramer F, Atlidakis V, Geambasu R, Hsu D, Hubaux J-P, Humbert M, Juels A, Lin H (2017) Fairtest: Discovering unwarranted associations in data-driven applications. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, pp 401–416
– reference: Zhang L, Wu Y, Wu X (2016) Situation testing-based discrimination discovery: A causal inference approach
– reference: Zhang P, Wang J, Sun J, Dong G, Wang X, Wang X, Dong J S, Dai T (2020) White-box fairness testing through adversarial sampling. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp 949–960
– reference: PanichellaAKifetewFMTonellaPA large scale empirical comparison of state-of-the-art search-based test case generatorsInf Softw Technol201810423625610.1016/j.infsof.2018.08.009
– reference: FriedmanBNissenbaumHBias in computer systemsACM Trans Inf Syst199614333034710.1145/230538.230561
– reference: Del Grosso C, Antoniol G, Di Penta M, Galinier P, Merlo E (2005) Improving network applications security: a new heuristic to generate stress testing data. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation, pp 1037–1043
– reference: Tatman R (2017) Gender and dialect bias in youtube’s automatic captions. In: Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, pp 53–59
– reference: Corbett-Davies S, Pierson E, Feller A, Goel S, Huq A (2017) Algorithmic decision making and the cost of fairness. In: Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pp 797–806
– reference: Ledford H (2019) Millions of black people affected by racial bias in health-care algorithms. [Online; accessed 7-August-2021]. [Online]. Available: https://www.nature.com/articles/d41586-019-03228-6
– reference: Mahdawi A (2018) Is your friend getting a cheaper Uber fare than you are? [Online; accessed 7-August-2021]. [Online]. Available: https://www.theguardian.com/commentisfree/2018/apr/13/uber-lyft-prices-personalized-datahttps://www.theguardian.com/commentisfree/2018/apr/13/uber-lyft-prices-personalized-data
– reference: Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias. Propublica
– reference: Ferral K Wisconsin supreme court allows state to continue using computer program to assist in sentencing. the capital times. [Online; accessed 9-January- 2020]. [Online]. Available: http://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.htmlhttp://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.htmlhttp://host.madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article7eb67874-bf40-59e3-b62a-923d1626fa0f.html
– reference: KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl Inf Syst201233113310.1007/s10115-011-0463-8
– reference: BellamyRKEDeyKHindMHoffmanSCHoudeSKannanKLohiaPMartinoJMehtaSMojsilovićAAi fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J Res Dev2019634/54110.1147/JRD.2019.2942287
– reference: Bendick M (2007) Situation Testing for Employment Discrimination in the United States of America. [Online; accessed 29-November-2021]. [Online]. Available: https://www.cairn.info/revue-horizons-strategiques-2007-3-page-17.htmhttps://www.cairn.info/revue-horizons-strategiques-2007-3-page-17.htm
– reference: Ingold D, Soper S (2016) Amazon doesn’t consider the race of its customers. should it? Bloomberg News
– reference: VarghaADelaneyHDA critique and improvement of the cl common language effect size statistics of mcgraw and wongJ Educ Behav Stat2000252101132
– reference: Barocas S, Hardt M, Narayanan A (2018) Fairness and machine learning. fairmlbook.org
– reference: Walker K, Jiarpakdee J, Loupis A, Tantithamthavorn C, Joe K, Ben-Meir M, Akhlaghi H, Hutton J, Wang W, Stephenson M, Blecher G, Buntine P, Sweeny A, Turhan B (2021) On behalf of the Australasian College for Emergency Medicine, Emergency medicine patient wait time multivariable prediction models: a multicentre derivation and validation study. medRxiv, [Online]. Available: https://www.medrxiv.org/content/early/2021/03/24/2021.03.19.21253921
– reference: Di SommaSPaladinoLVaughanLLalleIMagriniLMagnantiMOvercrowding in emergency department: an international issueInternal Emerg Med201510217117510.1007/s11739-014-1154-8[Online]. Available: https://doi.org/10.1007/s11739-014-1154-8
– reference: StehliJDuffySJBurgessSKuhnLGulatiMChowCZamanSSex disparities in myocardial infarction: biology or bias?Heart Lung Circul2021301182610.1016/j.hlc.2020.06.025
– reference: Runeson P, Engström E, Storey M-A (2020) The design science paradigm as a frame for empirical software engineering. In: Contemporary empirical methods in software engineering. Springer, pp 127–147
– reference: Panichella A, Kifetew F M, Tonella P (2015) Reformulating branch coverage as a many-objective optimization problem. In: 2015 IEEE 8th international conference on software testing, verification and validation (ICST). IEEE, pp 1–10
– reference: Mao K, Harman M, Jia Y (2016) Sapienz: Multi-objective automated testing for android applications. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp 94–105
– reference: Chakraborty J, Majumder S, Menzies T (2021) Bias in machine learning software: Why? how? what to do? arXiv:2105.12195
– reference: Selbst A D, Boyd D, Friedler S A, Venkatasubramanian S, Vertesi J (2019) Fairness and abstraction in sociotechnical systems. In: Proceedings of the conference on fairness, accountability, and transparency, pp 59–68
– reference: Galhotra S, Brun Y, Meliou A (2017) Fairness testing: testing software for discrimination. In: Joint Meeting on Foundations of Software Engineering (FSE). ACM, pp 498–510
– reference: McMinnPSearch-based software test data generation: a surveySoftw Test Verif Reliab200414210515610.1002/stvr.294
– reference: JuergensCPDabinBFrenchJKKritharidesLHyunKKilianJChewDerekPBBriegerDEnglish as a second language and outcomes of patients presenting with acute coronary syndromes: results from the concordance registryMed J Aust2016204623923910.5694/mja15.00812[Online]. Available: https://doi.org/10.5694/mja15.00812
– reference: Wegener J, Bühler O (2004) Evaluation of different fitness functions for the evolutionary testing of an autonomous parking system. In: Genetic and Evolutionary Computation Conference. Springer, pp 1400–1412
– reference: Ghaffary S (2019) The algorithms that detect hate speech online are biased against black people. [Online; accessed 14-October-2020]. [Online]. Available: https://www.vox.com/recode/2019/8/15/20806384/social-media-hate-speech-bias-black-african-american-facebook-twitterhttps://www.vox.com/recode/2019/8/15/20806384/social-media-hate-speech-bias-black-african-american-facebook-twitter
– reference: Ribeiro M T, Singh S, Guestrin C (2016) ”why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144
– reference: Chiappa S (2019) Path-specific counterfactual fairness. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 7801–7808
– reference: Hardawar D (2012) Staples, home depot, and other online stores change prices based on your location. [Online; accessed 14-October-2020]. [Online]. Available: https://venturebeat.com/2012/12/24/staples-online-stores-price-changes/https://venturebeat.com/2012/12/24/staples-online-stores-price-changes/
– reference: Calmon F, Wei D, Vinzamuri B, Ramamurthy K N, Varshney K R (2017) Optimized pre-processing for discrimination prevention. In: Advances in Neural Information Processing Systems, pp 3992–4001
– reference: Alshahwan N, Gao X, Harman M, Jia Y, Mao K, Mols A, Tei T, Zorin I (2018) Deploying search based software engineering with sapienz at facebook. In: International Symposium on Search Based Software Engineering. Springer, pp 3–45
– reference: Luong B T, Ruggieri S, Turini F (2011) k-nn as an implementation of situation testing for discrimination discovery and prevention. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 502–510
– reference: Zhang J M, Harman M, Ma L, Liu Y (2020) Machine learning testing: Survey, landscapes and horizons. IEEE Trans Softw Eng
– reference: Mattioli D (2012) On Orbitz, Mac Users Steered to Pricier Hotels. [Online; accessed 9-January-2020]. [Online]. Available: http://www.wsj.com/articles/SB10001424052702304458604577488822667325882
– reference: Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2019) A survey on bias and fairness in machine learning. arXiv:1908.09635
– reference: Chakraborty J, Majumder S, Yu Z, Menzies T (2020) Fairway: A way to build fair ml software. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp 654–665
– reference: Chouldechova A, Benavides-Prado D, Fialko O, Vaithianathan R (2018) A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. In: Conference on Fairness, Accountability and Transparency. PMLR, pp 134–148
– reference: Ingold D, Soper S (2016) Amazon doesn’t consider the race of its customers. should it? [Online; accessed 14-October-2020]. [Online]. Available: https://www.bloomberg.com/graphics/2016-amazon-same-day/
– reference: RamamoorthyCVHoGSPerformance evaluation of asynchronous concurrent systems using petri netsIEEE Trans Softw Eng1980544044958537410.1109/TSE.1980.230492
– reference: WechkunanukulKGranthamHTeubnerDHyunKKClarkRAPresenting characteristics and processing times for culturally and linguistically diverse (cald) patients with chest pain in an emergency department: Time, ethnicity, and delay (ted) study iiInt J Cardiol201622090190810.1016/j.ijcard.2016.06.244
– reference: Strobel S, Ren K Y, Dragoman A, Pettit C, Stancati A, Kallergis D, Smith M, Sidhu K, Rutledge G, Mondoux S (2021) Do patients respond to posted emergency department wait times: Time-series evidence from the implementation of a wait time publication system in hamilton, canada. Ann Emerg Med
– reference: Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: A critical review of fair machine learning. arXiv:1808.00023
– reference: Fraser G, Arcuri A (2013) Evosuite: On the challenges of test case generation in the real world. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation. IEEE, pp 362–369
– reference: SunJLinQZhaoPZhangQXuKChenHHuCJStuntzMLiHLiuYReducing waiting time and raising outpatient satisfaction in a chinese public tertiary general hospital-an interrupted time series studyBMC Public Health201717111110.1186/s12889-016-3954-4
– reference: StricklandEDoc bot preps for the orIEEE Spectr2016536326010.1109/MSPEC.2016.7473150
– reference: KlareBFBurgeMJKlontzJCBrueggeRWVJainAKFace recognition performance: Role of demographic informationIEEE Trans Inf Forensic Secur2012761789180110.1109/TIFS.2012.2214212
– reference: McSweeneyJCRosenfeldAGAbelWMBraunLTBurkeLEDaughertySLFletcherGFGulatiMMehtaLSPetteyCReckelhoffJFPreventing and experiencing ischemic heart disease as a woman: State of the scienceCirculation2016133131302133110.1161/CIR.0000000000000381[Online]. Available: https://doi.org/10.1161/CIR.0000000000000381
– reference: López-IbánezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: Iterated racing for automatic algorithm configurationOper Res Perspect2016343583579175
– reference: UdellJAFonarowGCMaddoxTMCannonCPFrank PeacockWLaskeyWKGrau-SepulvedaMVSmithEEHernandezAFPetersonEDSustained sex-based treatment differences in acute coronary syndrome care: insights from the american heart association get with the guidelines coronary artery disease registryClin Cardiol201841675876810.1002/clc.22938
– reference: Bishop P G, Bloomfield R E (2002) Worst case reliability prediction based on a prior estimate of residual defects. In: 13th International Symposium on Software Reliability Engineering, 2002. Proceedings. IEEE, pp 295–303
– reference: Bairey MerzCNAndersenHSpragueEBurnsAKeidaMWalshMNGreenbergerPCampbellSPollinIMcCulloughCBrownNJenkinsMRedbergRJohnsonPRobinsonBKnowledge, attitudes, and beliefs regarding cardiovascular disease in women: The women’s heart allianceJ Am Coll Cardiol201770212313210.1016/j.jacc.2017.05.024[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0735109717374077
– reference: LakhotiaKHarmanMGrossHAustin: An open source tool for search based software testing of c programsInf Softw Technol201355111212510.1016/j.infsof.2012.03.009
– reference: Kamishima T, Akaho S, Sakuma J (2011) Fairness-aware learning through regularization approach. In: 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, pp 643–650
– reference: Mullainathan S (2019) Biased algorithms are easier to fix than biased people, www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html, accessed: 10/12/2019.
– reference: Olson P (2011) CNN Money, The algorithm that beats your bank manager. http://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beats-your-bank-manager/#cd84e4f77ca8, [Accessed 9/11/2020]
– reference: ArcuriABriandLA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftw Test Verif Reliab201424321925010.1002/stvr.1486
– reference: Caton S, Haas C (2020) Fairness in machine learning: A survey
– reference: HardtMPriceESrebroNEquality of opportunity in supervised learningAdv Neural Inf Process Syst20162933153323
– reference: Horkoff J (2019) Non-functional requirements for machine learning: Challenges and new directions. In: 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE, pp 386–391
– reference: Johnson B, Bartola J, Angell R, Keith K, Witty S, Giguere S J, Brun Y (2020) Fairkit, fairkit, on the wall, who’s the fairest of them all? supporting data scientists in training fair models. arXiv:2012.09951
– reference: ShahSPatelARumoroDPHohmannSFullamFManaging patient expectations at emergency department triagePatient Exper J201522314410.35680/2372-0247.1090
– reference: Binns R (2018) Fairness in machine learning: Lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency. PMLR, pp 149–159
– reference: Grgic-Hlaca N, Zafar M B, Gummadi K P, Weller A (2016) The case for process fairness in learning: Feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, vol 1, p 2
– ident: 10116_CR36
  doi: 10.1109/RE.2019.00050
– ident: 10116_CR48
– volume: 30
  start-page: 18
  issue: 1
  year: 2021
  ident: 10116_CR70
  publication-title: Heart Lung Circul
  doi: 10.1016/j.hlc.2020.06.025
– ident: 10116_CR63
  doi: 10.1007/978-3-030-32489-6_5
– ident: 10116_CR86
– volume: 2
  start-page: 31
  issue: 2
  year: 2015
  ident: 10116_CR65
  publication-title: Patient Exper J
  doi: 10.35680/2372-0247.1090
– volume: 33
  start-page: 1
  issue: 1
  year: 2012
  ident: 10116_CR41
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0463-8
– volume: 24
  start-page: 219
  issue: 3
  year: 2014
  ident: 10116_CR4
  publication-title: Softw Test Verif Reliab
  doi: 10.1002/stvr.1486
– volume: 41
  start-page: 686
  issue: 6
  year: 2011
  ident: 10116_CR69
  publication-title: J Emerg Med
  doi: 10.1016/j.jemermed.2011.01.018
– ident: 10116_CR77
  doi: 10.1145/3238147.3238165
– ident: 10116_CR3
– ident: 10116_CR11
– volume: 10
  start-page: 171
  issue: 2
  year: 2015
  ident: 10116_CR23
  publication-title: Internal Emerg Med
  doi: 10.1007/s11739-014-1154-8
– ident: 10116_CR67
  doi: 10.1109/ICST.2019.00022
– ident: 10116_CR38
– volume: 3
  start-page: 43
  year: 2016
  ident: 10116_CR46
  publication-title: Oper Res Perspect
– ident: 10116_CR19
– ident: 10116_CR22
  doi: 10.1145/1068009.1068185
– ident: 10116_CR53
– volume: 53
  start-page: 32
  issue: 6
  year: 2016
  ident: 10116_CR71
  publication-title: IEEE Spectr
  doi: 10.1109/MSPEC.2016.7473150
– volume: 31
  start-page: 3
  issue: 1
  year: 2005
  ident: 10116_CR21
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2005.12
– volume: 117
  start-page: 1470
  year: 2003
  ident: 10116_CR68
  publication-title: Harv L Rev
  doi: 10.2307/4093259
– ident: 10116_CR49
  doi: 10.1145/2931037.2931054
– ident: 10116_CR64
  doi: 10.1145/3287560.3287598
– volume: 25
  start-page: 101
  issue: 2
  year: 2000
  ident: 10116_CR78
  publication-title: J Educ Behav Stat
– ident: 10116_CR66
– ident: 10116_CR2
  doi: 10.1007/978-3-319-99241-9_1
– ident: 10116_CR20
  doi: 10.1145/3097983.3098095
– ident: 10116_CR12
  doi: 10.1145/3368089.3409704
– volume: 18
  start-page: 115
  issue: 2-3
  year: 2000
  ident: 10116_CR60
  publication-title: Real-Time Syst
  doi: 10.1023/A:1008119029962
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: 10116_CR73
  publication-title: BMC Public Health
  doi: 10.1186/s12889-016-3954-4
– ident: 10116_CR84
  doi: 10.1145/3278721.3278779
– volume: 55
  start-page: 112
  issue: 1
  year: 2013
  ident: 10116_CR44
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2012.03.009
– ident: 10116_CR45
  doi: 10.1038/d41586-019-03228-6
– ident: 10116_CR31
– ident: 10116_CR56
– ident: 10116_CR15
  doi: 10.1145/3468264.3468537
– ident: 10116_CR47
  doi: 10.1145/2020408.2020488
– ident: 10116_CR10
– ident: 10116_CR39
– volume: 7
  start-page: 1789
  issue: 6
  year: 2012
  ident: 10116_CR43
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2012.2214212
– ident: 10116_CR85
  doi: 10.1109/ICSE43902.2021.00129
– ident: 10116_CR14
– ident: 10116_CR18
– ident: 10116_CR35
– ident: 10116_CR9
– ident: 10116_CR81
  doi: 10.1111/1742-6723.13640
– ident: 10116_CR1
  doi: 10.1145/3338906.3338937
– ident: 10116_CR30
  doi: 10.1145/3106237.3106277
– ident: 10116_CR79
  doi: 10.1016/S0140-6736(21)00684-X
– ident: 10116_CR42
  doi: 10.1109/ICDMW.2011.83
– volume: 7
  start-page: 1
  issue: 7.4
  year: 2016
  ident: 10116_CR24
  publication-title: Northpoint Inc
– volume: 5
  start-page: 440
  year: 1980
  ident: 10116_CR61
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.1980.230492
– ident: 10116_CR17
  doi: 10.1609/aaai.v33i01.33017801
– ident: 10116_CR27
– ident: 10116_CR57
  doi: 10.1109/ICST.2015.7102604
– volume: 220
  start-page: 901
  year: 2016
  ident: 10116_CR82
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2016.06.244
– ident: 10116_CR80
  doi: 10.1101/2021.03.19.21253921
– volume: 70
  start-page: 123
  issue: 2
  year: 2017
  ident: 10116_CR5
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.05.024
– ident: 10116_CR55
– ident: 10116_CR74
  doi: 10.18653/v1/W17-1606
– ident: 10116_CR75
  doi: 10.1109/EuroSP.2017.29
– volume: 104
  start-page: 236
  year: 2018
  ident: 10116_CR58
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2018.08.009
– ident: 10116_CR25
  doi: 10.1145/2090236.2090255
– ident: 10116_CR83
  doi: 10.1007/978-3-540-24855-2_160
– ident: 10116_CR13
– ident: 10116_CR62
  doi: 10.1145/2939672.2939778
– volume: 204
  start-page: 239
  issue: 6
  year: 2016
  ident: 10116_CR40
  publication-title: Med J Aust
  doi: 10.5694/mja15.00812
– ident: 10116_CR32
– volume: 41
  start-page: 758
  issue: 6
  year: 2018
  ident: 10116_CR76
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22938
– ident: 10116_CR72
  doi: 10.1016/j.annemergmed.2021.04.009
– ident: 10116_CR26
  doi: 10.1145/2783258.2783311
– ident: 10116_CR28
  doi: 10.1109/ICST.2013.51
– volume: 14
  start-page: 105
  issue: 2
  year: 2004
  ident: 10116_CR51
  publication-title: Softw Test Verif Reliab
  doi: 10.1002/stvr.294
– ident: 10116_CR88
  doi: 10.1145/3377811.3380331
– volume: 133
  start-page: 1302
  issue: 13
  year: 2016
  ident: 10116_CR52
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000381
– ident: 10116_CR8
  doi: 10.3917/hori.005.0017
– volume: 133
  start-page: 916
  issue: 9
  year: 2016
  ident: 10116_CR54
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000351
– ident: 10116_CR16
  doi: 10.1145/3368089.3409697
– volume: 14
  start-page: 330
  issue: 3
  year: 1996
  ident: 10116_CR29
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/230538.230561
– ident: 10116_CR59
  doi: 10.1145/3324884.3416612
– volume: 63
  start-page: 4
  issue: 4/5
  year: 2019
  ident: 10116_CR7
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2019.2942287
– volume: 29
  start-page: 3315
  year: 2016
  ident: 10116_CR34
  publication-title: Adv Neural Inf Process Syst
– ident: 10116_CR87
  doi: 10.1007/978-3-319-39931-7_9
– ident: 10116_CR6
– ident: 10116_CR33
– ident: 10116_CR37
– ident: 10116_CR50
SSID ssj0009745
Score 2.4537675
Snippet Context Machine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These...
ContextMachine learning (ML) software systems are permeating many aspects of our life, such as healthcare, transportation, banking, and recruitment. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compilers
Computer Science
Context
Evaluation
Health care
Interpreters
Inventing the Next Generation of Software Analytics
Machine learning
Programming Languages
Regression
Searching
Software
Software Engineering/Programming and Operating Systems
System effectiveness
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq-TgTQOmaZvmKOIiCIv4Ym8hry6CdmVb_f0mbWpVVNBrm4Qyk3l1Zr4BOIxZLp3aM5joNME-f4tVZnLMU5VITVSuaTNsgo3H2WTCr0JTWNlWu7cpyVpTf2h2S9MY--pz4rMHmC3CkjN3mRfH65v7DmqX1aOJPbgeps6ih1aZ78_4bI46H_NLWrS2NqP-_75zDVaDd4lOm-uwDgu22IB-O7kBBUHehMumyhh7G2aQz-l4jYcqD7lRTJFzZNHcTpsS2SKseqrLLi0KcyamqAGBLrfgbnR-e3aBw1gFrGlKK6yJzk5oHrNEq0xn0mhKU-seaaYIkTQnWkXUMZeryEhqJWea55Yo5zsYqVK6Db1iVtgdQEniohPJFVGGxTIy3EV_NvP_U3IauchrAKSlrtABc9yPvngUHVqyp5Zw1BI1tQQbwNH7nucGcePX1cOWaSJIXymck-dUi4fyH8Bxy6Tu9c-n7f5t-R6sRJ7Pdf3jEHrV_MXuw7J-rR7K-UF9K98AS5zbIw
  priority: 102
  providerName: Springer Nature
Title Search-based fairness testing for regression-based machine learning systems
URI https://link.springer.com/article/10.1007/s10664-022-10116-7
https://www.proquest.com/docview/2645318287
Volume 27
WOSCitedRecordID wos000776227600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5014MX1yeujyUHbxo0Tdu0J1FxEYRlWR-Il5JXF0Gr7q7-fjNtalFwL15yaNNQMpOZSWbyfQAHocilM3uGMh1HFPO3VCUmp2msIqmZyjWvyCbEYJA8PKRDf-A29WWVtU0sDbV51XhGfuwct1MXhGc_fXunyBqF2VVPobEIbUQqC1vQPr8cDEcN7K4oaYoRaI9y5939tRl_eS6OQ4rV7AyzEVT8dE1NvPkrRVp6nn7nv_-8Cis-5iRnlZKswYIt1qFT8zkQv7w34LqqPabo2QzBTA_aQTJDII5iTFx4SyZ2XBXOFr7XS1mMaYlnnxiTChp6ugl3_cvbiyvqyRao5jGfUc10csLzUERaJTqRRnMeW_dIC8WY5DnTKuBO5KkKjORWpkKnuWXKRRRGqphvQat4Lew2kChyexaZKqaMCGVgUrcntAmesuQ8cPuxLrB6njPtkciREOM5azCUUTaZk01WyiYTXTj8_uatwuGY23uvFkjm1-Q0a6TRhaNapM3rv0fbmT_aLiwHqEVlFeQetGaTD7sPS_pz9jSd9LxG9rCo9Ma1w-jRtaOb-y_yM-ms
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4q3SR2WccArWMwH9hpWOA4iZPDhBAwtWqpkFak3oJ_pUJiadd2Q_xT_I3zS5xFm0RvPeyaOJYcf37v2e_5-wDehiKXzuwZynQcUczfUpWYnKaxiqRmKte8EpsQo1EymaTfW_CvvguDZZW1TSwNtZlpPCN_7xy3gwvSs3-cX1FUjcLsai2hUcFiYP_-cVu25Vn_i5vfkyA4_zr-3KNeVYBqHvMV1UwnH3geikirRCfSaM5j6x5poRiTPGdaBdyNLVWBkdzKVOg0t0w512mkirnr9wlshWj9y1LBi4bkV5SiyEjrR7mLJfwlHX9VL45DirXzDHMfVNx3hE10-yAhW_q5885j-0N7sOsjavKpWgLPoGWLfejUahXEG6_nMKgqqyn6bUMwj4VWnqyQZqSYEhe8k4WdVmXBhW91WZaaWuK1NaakIr5evoAfGxnSS2gXs8IeAIkityOTqWLKiFAGJnU7XpvgGVLOA7fb7AKr5zXTnmcd5T5-Zw1DNGIhc1jISixkogund9_MK5aRta2PagBk3uIss2b2u_CuhlDz-v-9Ha7v7Rie9sbfhtmwPxq8gp0AEVzWex5Be7W4tq9hW9-sfi0Xb8q1QODnpqF1C8VARaU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqCouQFsQWz7qAz1RCxxv4uSAEAJWRVut9tBKiEvwV1ZIEOjutoi_xq9jJnGIigQ3DlwTx5Lj5xmPZ_wewFZXFRrNnuPCJjGn_C03qSt4lphYW2EKK2uxCTUYpKen2XAG7pu7MFRW2djEylC7a0tn5DvouBEuRM--U4SyiOFRb__mDycFKcq0NnIaNUT6_u4Ww7fJ3skRzvW3KOod_zr8wYPCALcykVNuhU13ZdFVsTWpTbWzUiYeH1llhNCyENZEEseZmchp6XWmbFZ4YdCNOm0Sif2-gzmFMSatrmF81hL-qkogmSj-uMR9RbiwE67tJUmXUx29oDwIV_87xXan-yQ5W_m83uJb_ltLsBB22uygXhofYcaXn2CxUbFgwah9hn5dcc3JnztG-S2y_mxK9CPliOGmno39qC4XLkOrq6oE1bOguTFiNSH2ZBl-v8qQVmC2vC79KrA4xkhNZ0YYp7o6chlGwj6ls6VCRhiFdkA0c5zbwL9OMiCXecscTbjIERd5hYtcdWD78Zubmn3kxdbrDRjyYIkmeYuEDnxv4NS-fr63Ly_39hU-IKLynyeD_hrMRwTmqgx0HWan479-A97bf9OLyXizWhYMzl8bWQ_dOU6H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Search-based+fairness+testing+for+regression-based+machine+learning+systems&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Perera%2C+Anjana&rft.au=Aleti%2C+Aldeida&rft.au=Tantithamthavorn%2C+Chakkrit&rft.au=Jiarpakdee%2C+Jirayus&rft.date=2022-05-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs10664-022-10116-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10116_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon