Faster Minimization of Tardy Processing Time on a Single Machine

This paper is concerned with the 1 | | ∑ p j U j problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also an important problem from a theoretical point of view as it generalizes the Subset Sum problem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 84; číslo 5; s. 1341 - 1356
Hlavní autoři: Bringmann, Karl, Fischer, Nick, Hermelin, Danny, Shabtay, Dvir, Wellnitz, Philip
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2022
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper is concerned with the 1 | | ∑ p j U j problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also an important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The best known running time follows from the famous Lawler and Moore algorithm that solves a more general weighted version in O ( P · n ) time, where P is the total processing time of all n jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for problem, each improving on Lawler and Moore’s algorithm in a different scenario. Our first algorithm runs in O ~ ( P 7 / 4 ) time, and outperforms Lawler and Moore’s algorithm in instances where n = ω ~ ( P 3 / 4 ) . Our second algorithm runs in O ~ ( min { P · D # , P + D } ) time, where D # is the number of different due dates in the instance, and D is the sum of all different due dates. This algorithm improves on Lawler and Moore’s algorithm when n = ω ~ ( D # ) or n = ω ~ ( D / P ) . Further, it extends the known O ~ ( P ) algorithm for the single due date special case of 1 | | ∑ p j U j in a natural way. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, and can be easily extended to the case of a fixed number of machines. For the first algorithm we define a new “skewed” version of ( max , min ) -Convolution which is interesting in its own right.
AbstractList This paper is concerned with the 1||∑pjUj problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also an important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The best known running time follows from the famous Lawler and Moore algorithm that solves a more general weighted version in O(P·n) time, where P is the total processing time of all n jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for problem, each improving on Lawler and Moore’s algorithm in a different scenario.Our first algorithm runs in O~(P7/4) time, and outperforms Lawler and Moore’s algorithm in instances where n=ω~(P3/4).Our second algorithm runs in O~(min{P·D#,P+D}) time, where D# is the number of different due dates in the instance, and D is the sum of all different due dates. This algorithm improves on Lawler and Moore’s algorithm when n=ω~(D#) or n=ω~(D/P). Further, it extends the known O~(P) algorithm for the single due date special case of 1||∑pjUj in a natural way. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, and can be easily extended to the case of a fixed number of machines. For the first algorithm we define a new “skewed” version of (max,min)-Convolution which is interesting in its own right.
This paper is concerned with the 1 | | ∑ p j U j problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also an important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The best known running time follows from the famous Lawler and Moore algorithm that solves a more general weighted version in O ( P · n ) time, where P is the total processing time of all n jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for problem, each improving on Lawler and Moore’s algorithm in a different scenario. Our first algorithm runs in O ~ ( P 7 / 4 ) time, and outperforms Lawler and Moore’s algorithm in instances where n = ω ~ ( P 3 / 4 ) . Our second algorithm runs in O ~ ( min { P · D # , P + D } ) time, where D # is the number of different due dates in the instance, and D is the sum of all different due dates. This algorithm improves on Lawler and Moore’s algorithm when n = ω ~ ( D # ) or n = ω ~ ( D / P ) . Further, it extends the known O ~ ( P ) algorithm for the single due date special case of 1 | | ∑ p j U j in a natural way. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, and can be easily extended to the case of a fixed number of machines. For the first algorithm we define a new “skewed” version of ( max , min ) -Convolution which is interesting in its own right.
Author Hermelin, Danny
Fischer, Nick
Bringmann, Karl
Wellnitz, Philip
Shabtay, Dvir
Author_xml – sequence: 1
  givenname: Karl
  surname: Bringmann
  fullname: Bringmann, Karl
  organization: Saarland University, Saarland Informatics Campus (SIC), Max Planck Institute for Informatics, Saarland Informatics Campus (SIC)
– sequence: 2
  givenname: Nick
  surname: Fischer
  fullname: Fischer, Nick
  organization: Saarland University, Saarland Informatics Campus (SIC), Max Planck Institute for Informatics, Saarland Informatics Campus (SIC)
– sequence: 3
  givenname: Danny
  surname: Hermelin
  fullname: Hermelin, Danny
  organization: Department of Industrial Engineering and Management, Ben-Gurion University of the Negev
– sequence: 4
  givenname: Dvir
  surname: Shabtay
  fullname: Shabtay, Dvir
  email: dvirs@bgu.ac.il
  organization: Department of Industrial Engineering and Management, Ben-Gurion University of the Negev
– sequence: 5
  givenname: Philip
  surname: Wellnitz
  fullname: Wellnitz, Philip
  organization: Max Planck Institute for Informatics, Saarland Informatics Campus (SIC)
BookMark eNp9kE9LAzEQxYMo2Fa_gKeA59X82yS9KcWq0KJgPYfs7qSmtNmabCn10xtbQfDQ0zDM-828eX10GtoACF1RckMJUbeJEFHygjBWEDJkutieoB4VPLeloKeoR6jShZBUnaN-SgtCKFND2UN3Y5s6iHjqg1_5L9v5NuDW4ZmNzQ6_xraGlHyY45lfAc4zi99yuwQ8tfWHD3CBzpxdJrj8rQP0Pn6YjZ6Kycvj8-h-UtRc8q6oKqKFglpV2inZNIqWwjnQQjSV4LKRwjYlgaqhTDonrK60cDU4KLmA7JQP0PVh7zq2nxtInVm0mxjyScNkKTUbCsaySh9UdWxTiuBM7bv9U120fmkoMT95mUNeJudl9nmZbUbZP3Qd_crG3XGIH6CUxWEO8c_VEeobgi5_4w
CitedBy_id crossref_primary_10_1007_s00453_023_01176_2
Cites_doi 10.1007/978-1-4684-2001-2_9
10.1137/1.9781611975482.3
10.1109/SFCS.1989.63475
10.1137/0117039
10.1006/jsco.1994.1042
10.1145/3293465
10.1137/1.9781611974782.69
10.1287/mnsc.16.1.77
10.1137/1.9781611974782.68
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-00928-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1356
ExternalDocumentID 10_1007_s00453_022_00928_w
GrantInformation_xml – fundername: FP7 Ideas: European Research Council
  grantid: 850979
  funderid: http://dx.doi.org/10.13039/100011199
– fundername: Israel Science Foundation
  grantid: 1070/20)
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-bb0847ec7b8f76dd7154ffe844db436d64ad50ebd126ff4a8b84fcefe534e7963
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749006400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:07:04 EDT 2025
Sat Nov 29 02:20:32 EST 2025
Tue Nov 18 22:33:02 EST 2025
Fri Feb 21 02:45:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Tardy processing time
min)-Convolution
max
Single machine scheduling
Pseudo-polynomial time algorithm
Fast polynomial multiplication
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-bb0847ec7b8f76dd7154ffe844db436d64ad50ebd126ff4a8b84fcefe534e7963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/21.11116/0000-0007-287E-0
PQID 2656829422
PQPubID 2043795
PageCount 16
ParticipantIDs proquest_journals_2656829422
crossref_citationtrail_10_1007_s00453_022_00928_w
crossref_primary_10_1007_s00453_022_00928_w
springer_journals_10_1007_s00453_022_00928_w
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1084 (2017)
Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: SETH-based lower bounds for subset sum and bicriteria path. In: Proceedings of of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 41–57 (2019)
Künnemann, M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-dimensional dynamic programming. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 21:1–21:15 (2017)
PanVictor YSimple multivariate polynomial multiplicationJ. Symb. Comput.1994183183186131813310.1006/jsco.1994.1042
CyganMarekMuchaMarcinWegrzyckiKarolWlodarczykMichalOn problems equivalent to (min, +)-convolutionACM Trans. Algorithms201915114:114:2510.1145/3293465
CormenThomas HLeisersonCharles ERivestRonald LSteinCliffordIntroduction to Algorithms20093CambridgeThe MIT Press1187.68679
GrahamRonald LBounds on multiprocessing timing anomaliesSIAM J. Appl. Math.196917241642924921410.1137/0117039
Kosaraju, S.R.: Efficient tree pattern matching. In: Proceedings of the 30th annual symposium on Foundations Of Computer Science (FOCS), pp. 178–183 (1989)
Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1062–1072 (2017)
LawlerEugene LMooreJames MA functional equation and its application to resource allocation and sequencing problemsManage. Sci.1969161778410.1287/mnsc.16.1.77
928_CR6
928_CR1
928_CR2
Ronald L Graham (928_CR5) 1969; 17
Thomas H Cormen (928_CR3) 2009
Victor Y Pan (928_CR11) 1994; 18
Marek Cygan (928_CR4) 2019; 15
Eugene L Lawler (928_CR10) 1969; 16
928_CR9
928_CR7
928_CR8
References_xml – reference: Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
– reference: CyganMarekMuchaMarcinWegrzyckiKarolWlodarczykMichalOn problems equivalent to (min, +)-convolutionACM Trans. Algorithms201915114:114:2510.1145/3293465
– reference: Künnemann, M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-dimensional dynamic programming. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 21:1–21:15 (2017)
– reference: GrahamRonald LBounds on multiprocessing timing anomaliesSIAM J. Appl. Math.196917241642924921410.1137/0117039
– reference: CormenThomas HLeisersonCharles ERivestRonald LSteinCliffordIntroduction to Algorithms20093CambridgeThe MIT Press1187.68679
– reference: Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1062–1072 (2017)
– reference: LawlerEugene LMooreJames MA functional equation and its application to resource allocation and sequencing problemsManage. Sci.1969161778410.1287/mnsc.16.1.77
– reference: Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: SETH-based lower bounds for subset sum and bicriteria path. In: Proceedings of of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 41–57 (2019)
– reference: Kosaraju, S.R.: Efficient tree pattern matching. In: Proceedings of the 30th annual symposium on Foundations Of Computer Science (FOCS), pp. 178–183 (1989)
– reference: PanVictor YSimple multivariate polynomial multiplicationJ. Symb. Comput.1994183183186131813310.1006/jsco.1994.1042
– reference: Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1084 (2017)
– volume-title: Introduction to Algorithms
  year: 2009
  ident: 928_CR3
– ident: 928_CR6
  doi: 10.1007/978-1-4684-2001-2_9
– ident: 928_CR1
  doi: 10.1137/1.9781611975482.3
– ident: 928_CR8
  doi: 10.1109/SFCS.1989.63475
– volume: 17
  start-page: 416
  issue: 2
  year: 1969
  ident: 928_CR5
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0117039
– volume: 18
  start-page: 183
  issue: 3
  year: 1994
  ident: 928_CR11
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1994.1042
– ident: 928_CR9
– volume: 15
  start-page: 14:1
  issue: 1
  year: 2019
  ident: 928_CR4
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3293465
– ident: 928_CR2
  doi: 10.1137/1.9781611974782.69
– volume: 16
  start-page: 77
  issue: 1
  year: 1969
  ident: 928_CR10
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.16.1.77
– ident: 928_CR7
  doi: 10.1137/1.9781611974782.68
SSID ssj0012796
Score 2.4154758
Snippet This paper is concerned with the 1 | | ∑ p j U j problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not...
This paper is concerned with the 1||∑pjUj problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1341
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Integers
Knapsack problem
Mathematics of Computing
Multiplication
Polynomials
Run time (computers)
Theory of Computation
Title Faster Minimization of Tardy Processing Time on a Single Machine
URI https://link.springer.com/article/10.1007/s00453-022-00928-w
https://www.proquest.com/docview/2656829422
Volume 84
WOSCitedRecordID wos000749006400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oevAiPiOKpgdv2gS6ZbfcNEbiQYgRNNw221dCgosBlL_vtHSXaNREj5t2Z5uZTufrzgvgXNiEN4ySlEv3tyqLFZV4WFJmTaQznrWV9SXz75NeTwyH7YeQFDYrot0Ll6Q_qctkN4c-nM-RUVcoSNDFOmyguRNOHR_7z6XvgCW-K5frO085GuiQKvM9jc_maIUxv7hFvbXpVP-3zh3YDuiSXC-3wy6smXwPqkXnBhIUeR-uOpkrkEC6o3z0EjIxycSSgfPjk5A8gB8lLkOE4FhG-vg4NqTrgy_NATx1bgc3dzT0UqAqiqM5lbKBdsioRKJ0Yq0ThE7WGsG5ljyKdcwz3WoYqZsstpZnQgpulbGmFXGDDI0OoZJPcnMERMeJjBKGt3AELy2kqJhieNEQCOWaXLMaNAuWpioUGnf9LsZpWSLZsyhFFqWeRemiBhflO6_LMhu_zq4XkkqDys1ShshUsDZnuIDLQjKr4Z-pHf9t-glsMS9cF_RYh8p8-mZOYVO9z0ez6Znfih_8WdgC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UTfQiPiOK2oM3bQLdsltuGiPBCMQIGm7N9pWQ4GIA5e87LV2IRk30uGm328y0na87880gdM5twipGScKk-1uVxopIOCwJtSbSKUvryvqU-a2k0-H9fv0hkMImebR77pL0J_WC7ObQh_M5UuISBXEyW0VrDCyWC-R77D4vfAc08VW5XN15wsBAB6rM92N8NkdLjPnFLeqtTaP4v3luo62ALvH1fDnsoBWT7aJiXrkBh428h64aqUuQgNuDbPASmJh4ZHHP-fFxIA_AR7FjiGBoS3EXHocGt33wpdlHT43b3k2ThFoKREVxNCVSVsAOGZVI0E6sdQLQyVrDGdOSRbGOWaprFSN1lcbWspRLzqwy1tQiZkCg0QEqZKPMHCKs40RGCYVbOICXGoyoqKJw0eAA5apM0xKq5iIVKiQad_UuhmKRItmLSICIhBeRmJXQxeKd13majV97l3NNibDlJoICMuW0zihM4DLXzLL559GO_tb9DG00e-2WaN117o_RJvWKdgGQZVSYjt_MCVpX79PBZHzql-UHJbna5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT8IwFG0UjfFF_Iwoah980wboyjbeNCrRCIQENLw161dCgoPAlL_vbdmGGjUxPi7tmubedvd0t-dchM5DE7CqloIwYf9WRb4kAj6WhBrtqYhFDWmcZH4r6HTCwaDR_cDid7fds5TkgtNgVZripDJRppIT3ywSsflHSqxoUEjmq2iN2aJB9rzee87zCDRwFbpsDXrCIFintJnvx_gcmpZ480uK1EWeZvH_c95GWynqxNeLZbKDVnS8i4pZRQecbvA9dNWMrHACbg_j4UvK0MRjg_s2v49TUgFMAFvmCIa2CPfgcaRx213K1PvoqXnXv7knaY0FIj3fS4gQVYhPWgYCvOYrFQCkMkaHjCnBPF_5LFL1qhaqRn1jWBSKkBmpja57TINxvQNUiMexPkRY-YHwAgqncwA1dRhRUknhABICxKsxRUuolpmXy1SA3NbBGPFcOtmZiIOJuDMRn5fQRf7OZCG_8WvvcuY1nm7FGaeAWEPaYBQmcJl5adn882hHf-t-hja6t03eeug8HqNN6vxs70WWUSGZvuoTtC7fkuFseupW6DsUQuPK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+Minimization+of+Tardy+Processing+Time+on+a+Single+Machine&rft.jtitle=Algorithmica&rft.au=Bringmann%2C+Karl&rft.au=Fischer%2C+Nick&rft.au=Hermelin%2C+Danny&rft.au=Shabtay%2C+Dvir&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=5&rft.spage=1341&rft.epage=1356&rft_id=info:doi/10.1007%2Fs00453-022-00928-w&rft.externalDocID=10_1007_s00453_022_00928_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon