Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation

We first consider a regular fractional Sturm–Liouville problem of two kinds RFSLP-I and RFSLP-II of order ν∈(0,2). The corresponding fractional differential operators in these problems are both of Riemann–Liouville and Caputo type, of the same fractional order μ=ν/2∈(0,1). We obtain the analytical e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 252; S. 495 - 517
Hauptverfasser: Zayernouri, Mohsen, Karniadakis, George Em
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.11.2013
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We first consider a regular fractional Sturm–Liouville problem of two kinds RFSLP-I and RFSLP-II of order ν∈(0,2). The corresponding fractional differential operators in these problems are both of Riemann–Liouville and Caputo type, of the same fractional order μ=ν/2∈(0,1). We obtain the analytical eigensolutions to RFSLP-I & -II as non-polynomial functions, which we define as Jacobi poly-fractonomials. These eigenfunctions are orthogonal with respect to the weight function associated with RFSLP-I & -II. Subsequently, we extend the fractional operators to a new family of singular fractional Sturm–Liouville problems of two kinds, SFSLP-I and SFSLP-II. We show that the primary regular boundary-value problems RFSLP-I & -II are indeed asymptotic cases for the singular counterparts SFSLP-I & -II. Furthermore, we prove that the eigenvalues of the singular problems are real-valued and the corresponding eigenfunctions are orthogonal. In addition, we obtain the eigen-solutions to SFSLP-I & -II analytically, also as non-polynomial functions, hence completing the whole family of the Jacobi poly-fractonomials. In numerical examples, we employ the new poly-fractonomial bases to demonstrate the exponential convergence of the approximation in agreement with the theoretical results.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.06.031