Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network
As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has ex...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 15; číslo 17; s. 9671 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2025
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow convergence when dealing with nonlinear, high-dimensional, and strongly coupled problems. In response to these issues, this paper proposes an UBDO framework that integrates an efficient intelligent optimization algorithm with an excellent surrogate model. By fusing butterfly search with Levy flight optimization, an improved chicken swarm algorithm is introduced, aiming to address the imbalance between global exploitation and local exploration capabilities in the original algorithm. Additionally, Bayesian optimization is employed to fit the limit-state evaluation function using a BP neural network, with the objective of reducing the high computational costs associated with uncertainty analysis through repeated limit-state evaluations in uncertainty-based optimization. Finally, a decoupled optimization framework is adopted to integrate uncertainty analysis with design optimization, enhancing global optimization capabilities under uncertainty and addressing challenges associated with results that lack sufficient accuracy or reliability to meet design requirements. Based on the results from engineering case studies, the proposed UBDO framework demonstrates notable effectiveness and superiority. |
|---|---|
| AbstractList | As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow convergence when dealing with nonlinear, high-dimensional, and strongly coupled problems. In response to these issues, this paper proposes an UBDO framework that integrates an efficient intelligent optimization algorithm with an excellent surrogate model. By fusing butterfly search with Levy flight optimization, an improved chicken swarm algorithm is introduced, aiming to address the imbalance between global exploitation and local exploration capabilities in the original algorithm. Additionally, Bayesian optimization is employed to fit the limit-state evaluation function using a BP neural network, with the objective of reducing the high computational costs associated with uncertainty analysis through repeated limit-state evaluations in uncertainty-based optimization. Finally, a decoupled optimization framework is adopted to integrate uncertainty analysis with design optimization, enhancing global optimization capabilities under uncertainty and addressing challenges associated with results that lack sufficient accuracy or reliability to meet design requirements. Based on the results from engineering case studies, the proposed UBDO framework demonstrates notable effectiveness and superiority. |
| Audience | Academic |
| Author | Ji, Qiang Li, Ran Jing, Shi |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0009-0008-5800-916X surname: Ji fullname: Ji, Qiang – sequence: 2 givenname: Ran orcidid: 0009-0006-3059-6759 surname: Li fullname: Li, Ran – sequence: 3 givenname: Shi orcidid: 0009-0003-3252-7202 surname: Jing fullname: Jing, Shi |
| BookMark | eNpdkU9v1DAQxSNUJErpiS8QiSNKsWPHf47LQmGlqj1Az9bEsbfebuzgeKmWI5-cKUGoqn2Y0dObn0bzXlcnMUVXVW8puWBMkw8wTbSjUgtJX1SnLZGiYZzKkyf9q-p8nncEn6ZMUXJa_b6N1uUCIZZj8xFmN9Sf3By2sb6ZShjDLyghxfoyw-geUr6vFw9Km3HK6Sf267tg712svz1AHuvVfptyKHdjDXFA9xFp8Ix27Q4Z9ljKI_JN9dLDfnbn_-pZdXv5-fv6a3N182WzXl01lglWGrCicwM4PlBNByyat9T2jluqmO2tJ7ZTlmvtNXTSCmhBcC_7ngDKUrGzarNwhwQ7M-UwQj6aBMH8FVLeGsgl2L0zA0WIbGlLqOLeir714KnkwirFNGfIerew8AY_Dm4uZpcOOeL6hrUcI-gYEei6WFxbQGiIPpUMFv_gxmAxPR9QX6mu44oT1eLA-2XA5jTP2fn_a1JiHkM2T0JmfwCPe50n |
| Cites_doi | 10.1016/j.cma.2023.116083 10.1007/s00158-020-02587-3 10.1049/cim2.12097 10.1016/B978-0-443-13925-3.00019-4 10.3390/app11104708 10.1201/9781003464792 10.1016/j.cie.2024.110335 10.1016/j.advengsoft.2013.12.007 10.1007/s00366-020-01187-5 10.1109/TSMC.2019.2956757 10.1504/IJOSM.2025.146788 10.1016/j.matdes.2021.109789 10.1109/TAC.2020.2977939 10.1016/j.eswa.2023.121219 10.1111/ffe.12906 10.1098/rsta.2022.0395 10.1016/j.ress.2022.108539 10.1109/TSMC.2025.3579565 10.1108/IJSI-06-2023-0049 10.1016/j.knosys.2024.111850 10.1016/j.aej.2023.12.050 10.1007/s00158-024-03884-x 10.1007/s11709-023-0976-8 10.1007/s12065-023-00822-6 10.1108/IJSI-08-2023-0080 10.1504/IJOSM.2025.146803 10.1016/j.cma.2024.116863 10.1016/j.oceaneng.2024.116842 10.1016/j.engstruct.2021.112989 10.1016/j.compstruct.2022.115862 10.1016/j.ress.2023.109406 10.1016/j.renene.2022.12.062 10.1016/j.cma.2023.115925 10.1002/9781394226771.ch8 10.1016/j.net.2025.103485 10.1504/IJOSM.2025.146804 10.1007/s00500-018-3102-4 10.1016/j.cma.2020.113610 10.1088/1742-6596/1654/1/012043 10.1002/adma.202370237 10.1007/s00158-023-03639-0 10.1007/s11831-022-09804-w 10.1007/978-981-97-3820-5_44 10.1016/B978-0-443-13242-1.00026-6 10.3390/app15084438 10.1016/j.compstruc.2022.106910 10.1007/s10462-024-10723-4 10.1016/j.cma.2024.117388 10.1016/j.eswa.2025.128027 10.1108/IJSI-10-2022-0129 10.1080/0305215X.2021.1928110 10.1007/s10462-024-10786-3 10.1016/j.oceaneng.2024.118213 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15179671 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_d1f9a72120184fc6b2faf1746c883943 A855484082 10_3390_app15179671 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-ac65edae4d191de4d9421cbe4c183cbcf0c58c499f9a57c6a2a64f7bb0a8c4783 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001569569000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 18:54:24 EDT 2025 Thu Nov 20 19:10:28 EST 2025 Tue Nov 04 18:11:36 EST 2025 Sat Nov 29 07:14:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-ac65edae4d191de4d9421cbe4c183cbcf0c58c499f9a57c6a2a64f7bb0a8c4783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0006-3059-6759 0009-0003-3252-7202 0009-0008-5800-916X |
| OpenAccessLink | https://www.proquest.com/docview/3249675306?pq-origsite=%requestingapplication% |
| PQID | 3249675306 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d1f9a72120184fc6b2faf1746c883943 proquest_journals_3249675306 gale_infotracacademiconefile_A855484082 crossref_primary_10_3390_app15179671 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Huang (ref_41) 2025; 2 Wang (ref_4) 2020; 65 ref_14 ref_11 Yang (ref_18) 2024; 382 Yang (ref_17) 2023; 14 ref_19 Yu (ref_36) 2023; 17 ref_15 Su (ref_40) 2025; 57 Meng (ref_8) 2023; 203 Correia (ref_42) 2025; 2 ref_23 Lai (ref_32) 2022; 9 Fu (ref_38) 2020; 1654 Dong (ref_49) 2023; 14 Meng (ref_7) 2023; 412 Meng (ref_3) 2024; 295 Gharehchopogh (ref_53) 2023; 30 Zhu (ref_25) 2024; 236 Allahvirdizadeh (ref_37) 2023; 238 Yang (ref_10) 2024; 6 Persoons (ref_13) 2023; 275 He (ref_22) 2024; 87 Ni (ref_39) 2021; 246 Zhong (ref_52) 2020; 62 ref_31 Hu (ref_16) 2024; 67 Luo (ref_1) 2024; 423 Alhijawi (ref_20) 2024; 17 Ghasemi (ref_24) 2024; 295 Li (ref_34) 2022; 224 Chen (ref_47) 2024; 57 Wang (ref_46) 2023; 35 Meng (ref_2) 2024; 307 Mirjalili (ref_51) 2014; 69 Lai (ref_9) 2023; 14 Wang (ref_26) 2024; 57 Zhang (ref_21) 2024; 194 Meng (ref_28) 2023; 66 Hamza (ref_29) 2022; 38 Meng (ref_35) 2021; 206 Yang (ref_5) 2019; 51 Zhang (ref_54) 2021; 374 Su (ref_43) 2025; 286 Meng (ref_27) 2019; 42 Gargama (ref_45) 2024; 8 Zadeh (ref_30) 2022; 296 Meng (ref_33) 2022; 54 Yang (ref_44) 2025; 2 Arora (ref_48) 2019; 23 Meng (ref_12) 2023; 407 Zhang (ref_6) 2024; 432 |
| References_xml | – volume: 412 start-page: 116083 year: 2023 ident: ref_7 article-title: A novel hybrid adaptive Kriging and water cycle algorithm for reliability-based design and optimization strategy: Application in offshore wind turbine monopile publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116083 – volume: 62 start-page: 1951 year: 2020 ident: ref_52 article-title: First-order reliability method based on Harris Hawks Optimization for high-dimensional reliability analysis publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02587-3 – volume: 6 start-page: e12097 year: 2024 ident: ref_10 article-title: MECSBO: Multi-strategy enhanced circulatory system based optimisation algorithm for global optimisation and reliability-based design optimisation problems publication-title: IET Collab. Intell. Manuf. doi: 10.1049/cim2.12097 – ident: ref_19 doi: 10.1016/B978-0-443-13925-3.00019-4 – ident: ref_31 doi: 10.3390/app11104708 – ident: ref_23 doi: 10.1201/9781003464792 – volume: 194 start-page: 110335 year: 2024 ident: ref_21 article-title: Intelligent planning of fire evacuation routes in buildings based on improved adaptive ant colony algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110335 – volume: 69 start-page: 46 year: 2014 ident: ref_51 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 38 start-page: 1953 year: 2022 ident: ref_29 article-title: A new efficient hybrid approach for reliability-based design optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-020-01187-5 – volume: 51 start-page: 5895 year: 2019 ident: ref_5 article-title: Stabilization of stochastic retarded systems based on sampled-data feedback control publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2956757 – volume: 2 start-page: 1 year: 2025 ident: ref_42 article-title: A review on fatigue design of offshore structures publication-title: Int. J. Ocean Syst. Manag. doi: 10.1504/IJOSM.2025.146788 – volume: 9 start-page: 2151 year: 2022 ident: ref_32 article-title: A general methodology for reliability-based robust design optimization of computation-intensive engineering problems publication-title: J. Comput. Des. Eng. – volume: 206 start-page: 109789 year: 2021 ident: ref_35 article-title: Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109789 – volume: 65 start-page: 5415 year: 2020 ident: ref_4 article-title: Stability analysis of discrete-time semi-Markov jump linear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.2977939 – volume: 236 start-page: 121219 year: 2024 ident: ref_25 article-title: Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121219 – volume: 42 start-page: 1219 year: 2019 ident: ref_27 article-title: Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12906 – volume: 382 start-page: 20220395 year: 2024 ident: ref_18 article-title: A novel learning function for adaptive surrogate-model-based reliability evaluation publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2022.0395 – volume: 224 start-page: 108539 year: 2022 ident: ref_34 article-title: Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108539 – ident: ref_11 doi: 10.1109/TSMC.2025.3579565 – volume: 14 start-page: 809 year: 2023 ident: ref_17 article-title: A reliability-based design and optimization strategy using a novel MPP searching method for maritime engineering structures publication-title: Int. J. Struct. Integr. doi: 10.1108/IJSI-06-2023-0049 – volume: 295 start-page: 111850 year: 2024 ident: ref_24 article-title: Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111850 – volume: 87 start-page: 543 year: 2024 ident: ref_22 article-title: EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.12.050 – volume: 67 start-page: 168 year: 2024 ident: ref_16 article-title: Reliability-based design optimization: A state-of-the-art review of its methodologies, applications, and challenges publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-024-03884-x – volume: 17 start-page: 1086 year: 2023 ident: ref_36 article-title: Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-023-0976-8 – volume: 17 start-page: 1245 year: 2024 ident: ref_20 article-title: Genetic algorithms: Theory, genetic operators, solutions, and applications publication-title: Evol. Intell. doi: 10.1007/s12065-023-00822-6 – volume: 14 start-page: 946 year: 2023 ident: ref_9 article-title: Fast solution of reliability-based robust design optimization by reducing the evaluation number for the performance functions publication-title: Int. J. Struct. Integr. doi: 10.1108/IJSI-08-2023-0080 – volume: 2 start-page: 35 year: 2025 ident: ref_41 article-title: Key vulnerability parameters for steel pipe pile-supported wharves considering the uncertainties in structural design publication-title: Int. J. Ocean Syst. Manag. doi: 10.1504/IJOSM.2025.146803 – volume: 423 start-page: 116863 year: 2024 ident: ref_1 article-title: Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.116863 – volume: 295 start-page: 116842 year: 2024 ident: ref_3 article-title: Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.116842 – volume: 246 start-page: 112989 year: 2021 ident: ref_39 article-title: Reliability based design optimization of bridges considering bridge-vehicle interaction by Kriging surrogate model publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112989 – volume: 296 start-page: 115862 year: 2022 ident: ref_30 article-title: An efficient Bi-level hybrid multi-objective reliability-based design optimization of composite structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115862 – volume: 238 start-page: 109406 year: 2023 ident: ref_37 article-title: Improved dynamic design method of ballasted high-speed railway bridges using surrogate-assisted reliability-based design optimization of dependent variables publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109406 – volume: 203 start-page: 407 year: 2023 ident: ref_8 article-title: A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower publication-title: Renew. Energy doi: 10.1016/j.renene.2022.12.062 – volume: 407 start-page: 115925 year: 2023 ident: ref_12 article-title: Unified reliability-based design optimization with probabilistic, uncertain-but-bounded and fuzzy variables publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.115925 – volume: 8 start-page: 125 year: 2024 ident: ref_45 article-title: Genetic Algorithm and Artificial Neural Networks in Reliability-Based Design Optimization publication-title: Reliab. Anal. Mod. Power Syst. doi: 10.1002/9781394226771.ch8 – volume: 57 start-page: 103485 year: 2025 ident: ref_40 article-title: An improved CREAM model based on Deng entropy and evidence distance publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2025.103485 – volume: 2 start-page: 52 year: 2025 ident: ref_44 article-title: Modelling and analysis of offshore wind turbine gearbox under multi-field coupling publication-title: Int. J. Ocean. Syst. Manag. doi: 10.1504/IJOSM.2025.146804 – volume: 23 start-page: 715 year: 2019 ident: ref_48 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 374 start-page: 113610 year: 2021 ident: ref_54 article-title: A PDF-based performance shift approach for reliability-based design optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113610 – volume: 1654 start-page: 012043 year: 2020 ident: ref_38 article-title: A reliability based multidisciplinary design optimization method with multi-source uncertainties publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1654/1/012043 – volume: 35 start-page: 2370237 year: 2023 ident: ref_46 article-title: Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials (Adv. Mater. 33/2023) publication-title: Adv. Mater. doi: 10.1002/adma.202370237 – volume: 66 start-page: 191 year: 2023 ident: ref_28 article-title: Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: A comparative study publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-023-03639-0 – volume: 30 start-page: 427 year: 2023 ident: ref_53 article-title: Advances in sparrow search algorithm: A comprehensive survey publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09804-w – ident: ref_14 doi: 10.1007/978-981-97-3820-5_44 – ident: ref_15 doi: 10.1016/B978-0-443-13242-1.00026-6 – ident: ref_50 doi: 10.3390/app15084438 – volume: 275 start-page: 106910 year: 2023 ident: ref_13 article-title: Robust design optimisation under lack-of-knowledge uncertainty publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106910 – volume: 57 start-page: 98 year: 2024 ident: ref_26 article-title: Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10723-4 – volume: 432 start-page: 117388 year: 2024 ident: ref_6 article-title: A novel reliability-based design optimization method through instance-based transfer learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117388 – volume: 286 start-page: 128027 year: 2025 ident: ref_43 article-title: A novel belief entropy and its application in cooperative situational awareness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.128027 – volume: 14 start-page: 248 year: 2023 ident: ref_49 article-title: Robust optimization design method for structural reliability based on active-learning MPA-BP neural network publication-title: Int. J. Struct. Integr. doi: 10.1108/IJSI-10-2022-0129 – volume: 54 start-page: 1374 year: 2022 ident: ref_33 article-title: Reliability-based multidisciplinary concurrent design optimization method for complex engineering systems publication-title: Eng. Optim. doi: 10.1080/0305215X.2021.1928110 – volume: 57 start-page: 170 year: 2024 ident: ref_47 article-title: A comprehensive survey on the chicken swarm optimization algorithm and its applications: State-of-the-art and research challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10786-3 – volume: 307 start-page: 118213 year: 2024 ident: ref_2 article-title: Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.118213 |
| SSID | ssj0000913810 |
| Score | 2.3290138 |
| Snippet | As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 9671 |
| SubjectTerms | Accuracy Algorithms Analysis Bayesian optimization Behavior BP neural network Case studies Collaboration Design optimization Efficiency Engineering engineering structure Environmental engineering improved chicken swarm optimization algorithm Mathematical optimization Methods Neural networks Optimization algorithms uncertainty-based design optimization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfOL6IgdBPRS3z6TH9bF4kFXwgbeQpImKbpVuVbz6y51Ju7IexIunlhDKkHk3M98A7OQOjZzgKLyuEEESZyoQIc168djqkePK3-DfnPHBQNze5hcTo76oJqyBB24O7qAIXa4wTUFHJRJnMh055TCMzoxA3554nM8uzyeSKW-D85Cgq5qGvBjzeroPDgmOKuPhDxfkkfp_s8feyfQXYL6NDlmvoWoRpmy5BHMTmIFLsNhq44jttZDR-8vweY0r_m6__ggO0TEV7NiXZrBzNAnDtteS9ceVWKzZg0vNTwV8p5qMR1uyy3dVDVnv6e65eqjvh0yVBe7-sNRs-fNrhOuBxA6aQvIVuO6fXB2dBu10hcDEWVwHymSpLZRNCkzZCnzkSRQabRODWm60cV2TCoMJEZ5_yk2mIpUljmvdVbjMRbwK0-VzadeAuVCnWjmM9QqNzi5SGsNOY7gWkU246nZgZ3zg8qUB0ZCYfBBf5ARfOnBIzPjeQsjXfgHlQbbyIP-Shw7sEisl6WddKaPaNgOklJCuZI_q8gSN2e7A5pjbslXckcT4EklJMZFa_w9qNmA2ooHBvihtE6br6tVuwYx5qx9G1baX2S_mRPIn priority: 102 providerName: Directory of Open Access Journals |
| Title | Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network |
| URI | https://www.proquest.com/docview/3249675306 https://doaj.org/article/d1f9a72120184fc6b2faf1746c883943 |
| Volume | 15 |
| WOSCitedRecordID | wos001569569000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4EegBZQQx_aQ6XCwSJ-xLs-VQk0AgnSCCgqp9U-S1XiFMeAeuWXM7Pe9HGAC6c445U10szOa2e_AdirPBo5wVF5vRVJkZcqESnNegnY6pnnKpzgf37HJxNxclJNY8FtEdsqlzYxGGo7N1Qjf4mOv8LgFiPcg4vvCU2NotPVOELjLqwSUhnq-erocDL9cFVlIdRLkfa7i3k55vd0LpwSLFXJ01uuKCD2_80uB2czfvi_bD6CBzHMZMNOL9bhjqs3YO0G-OAGrMdtvWDPI_b0i8fw-xgpoUmgvUxG6OEsex16PNgR2pZZvLTJxsuWLtatQVJXncBnau44dzX7-Es1Mzb8dorstV9nTNUWV186urV5-2sEEILMTrqO9CdwPD789OpNEsc0JCYv8zZRphw4q1xhMfez-FMVWWq0KwyaC6ON75uBMJhZ-UoNuClVpsrCc637Cslc5E9hpZ7XbhOYT_VAK49Bo9XoNTOlMX41hmuRuYKrfg_2lhKTFx0ah8QshgQrbwi2ByOS5tUSgtAOhHlzKuOOlDZFfjD_xQhIFN6UOvPKY35WGoFBY5H3YJ90QdJGbxtlVLyvgJwSZJYcUoOfoHndPdhe6oKMFmAhrxXh2b9fb8H9jGYKh761bVhpmx9uB-6Zn-3ZotmNCr0bagX4b_r2_fTLH-FGBOU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpAbCngQxFwiMhrE-dQoS1l1VW3y0q0qD0Z27ELgs2WbNpqr_wgfiMzTlLaA9x64JRoYkWW82Ue9sw3ABuZRSXHUwSvzbkXR4n0eEC9Xhy3emhT6U7wP43S8ZgfHmaTJfjV1sJQWmWrE52izmea9sjfoOHP0LlFD_ftyQ-PukbR6WrbQqOGxa5ZnGPINt8cbuP3fRGGg_f773a8pquAp6Mkqjypk57JpYlzDFVyvGRxGGhlYo3o1kpbX_e4xkDAZrKX6kSGMoltqpQvUZzyCN97A5ZjAnsHlifDvcnRxa4OsWzywK8LAaMo8-kcOiAarCQNrpg-1yHgb3bAGbfBvf9tWe7D3caNZv0a9yuwZIpVuHOJXHEVVhq1NWevGm7t1w_g5wFKXBJEtfC20ILnbNvlsLAPqDunTVEqG7Qpa6weg6J69wXvKXnlmynYx3NZTln_-zEuR_VlymSR4-iFoarUq28jAhSc7LjOuH8IB9eyMo-gU8wK8xiYDVRPSYtOca7QKwilQv9c61Tx0MSp9Luw0SJEnNRsIwKjNAKSuASkLmwRei6GEEW4E8zKY9FoHJEHOB-M79HD47HViQqttBh_JpqjUxxHXXhJ2BOkyKpSatnUY-BMiRJM9CmBkVM_8i6st9gTjYabiz_AW_v34-dwa2d_byRGw_HuE7gdUv9kl6O3Dp2qPDVP4aY-q77Oy2fNz8Tg83UD9Td0TWJ5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aHUJwADZAKwzwYQg4REucNHEOCHWUimqjVIKh7WRsx94QtB1pYOqVn8Wv473EGdsBbjtwauVakeV-ee979vfeA9jKHRo5kSF4XSGCJE5VICLq9VLXVucuU_UN_se9bDwWBwf5ZAV-tbkwJKtsbWJtqIu5oTPybXT8OZJbZLjbzssiJoPhy5NvAXWQopvWtp1GA5FduzzF8G3xYjTA__oJ58PXH169CXyHgcDEaVwFyqQ9WyibFBi2FPiRJzwy2iYGkW60caHpCYNBgctVLzOp4ipNXKZ1qHA4EzE-9wqsIiVPeAdWJ6O3k8OzEx6quCmisEkKjOM8pDvpiEpipVl0wQ3W3QL-5hNqRze89T9v0W246ek16zfvwxqs2Nk63DhXdHEd1rw5W7Bnvub28zvwcx9HanFEtQx20LMXbFBrW9g7tKlTn6zKhq2UjTVzcKg5lcHvJGr5Ymfs_akqp6z_9Qi3ozqeMjUrcPbSUrbqxadRYRRc7LhR4t-F_UvZmXvQmc1ndgOYi3RPK4dkudDIFrjSyNuNybTgNslU2IWtFi3ypKlCIjF6I1DJc6Dqwg4h6WwKlQ6vB-blkfSWSBYRrgfjfmR-InEm1dwph3FpagSS5STuwlPCoSQDV5XKKJ-ngSulUmGyT8JGQX3Ku7DZ4lB6y7eQf0B4_98_P4ZriE65NxrvPoDrnNoq19K9TehU5Xf7EK6aH9XnRfnIv1cMPl02Tn8Dee1rOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Based+Design+Optimization+Framework+Based+on+Improved+Chicken+Swarm+Algorithm+and+Bayesian+Optimization+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Ji+Qiang&rft.au=Li%2C+Ran&rft.au=Shi%2C+Jing&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=17&rft.spage=9671&rft_id=info:doi/10.3390%2Fapp15179671&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |