A Python script for adaptive layout optimization of trusses

Numerical layout optimization employing an adaptive ‘member adding’ solution scheme provides a computationally efficient means of generating (near-)optimum trusses for problems involving single or multiple load cases. To encourage usage of the method, a Python script is presented, allowing medium to...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization Vol. 60; no. 2; pp. 835 - 847
Main Authors: He, Linwei, Gilbert, Matthew, Song, Xingyi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects:
ISSN:1615-147X, 1615-1488
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical layout optimization employing an adaptive ‘member adding’ solution scheme provides a computationally efficient means of generating (near-)optimum trusses for problems involving single or multiple load cases. To encourage usage of the method, a Python script is presented, allowing medium to large-scale problems to be solved efficiently. As well as handling multiple load cases, the short (98 line) script presented can tackle truss optimization problems involving unequal limiting tensile and compressive stresses, joint costs, and non-convex polygonal domains, with or without holes. Various numerical examples are used to demonstrate the efficacy of the script presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-019-02226-6