Deviation maximization for rank-revealing QR factorizations

In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 91; číslo 3; s. 1047 - 1079
Hlavní autoři: Dessole, Monica, Marcuzzi, Fabio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2022
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a new column selection strategy, named here “Deviation Maximization”, and apply it to compute rank-revealing QR factorizations as an alternative to the well-known block version of the QR factorization with the column pivoting method, called QP3 and currently implemented in LAPACK’s xgeqp3 routine. We show that the resulting algorithm, named QRDM, has similar rank-revealing properties of QP3 and better execution times. We present experimental results on a wide data set of numerically singular matrices, which has become a reference in the recent literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-022-01291-1