All-Weather Forest Fire Automatic Monitoring and Early Warning Application Based on Multi-Source Remote Sensing Data: Case Study of Yunnan
Forest fires pose severe ecological, climatic, and socio-economic threats, destroying habitats and emitting greenhouse gases. Early and timely warning is particularly challenging because fires often originate from small-scale, low-temperature ignition sources. Traditional monitoring approaches prima...
Uloženo v:
| Vydáno v: | Fire (Basel, Switzerland) Ročník 8; číslo 9; s. 344 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2025
|
| Témata: | |
| ISSN: | 2571-6255, 2571-6255 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Forest fires pose severe ecological, climatic, and socio-economic threats, destroying habitats and emitting greenhouse gases. Early and timely warning is particularly challenging because fires often originate from small-scale, low-temperature ignition sources. Traditional monitoring approaches primarily rely on single-source satellite imagery and empirical threshold algorithms, and most forest fire monitoring tasks remain human-driven. Existing frameworks have yet to effectively integrate multiple data sources and detection algorithms, lacking the capability to provide continuous, automated, and generalizable fire monitoring across diverse fire scenarios. To address these challenges, this study first improves multiple monitoring algorithms for forest fire detection, including a statistically enhanced automatic thresholding method; data augmentation to expand the U-Net deep learning dataset; and the application of a freeze–unfreeze transfer learning strategy to the U-Net transfer model. Multiple algorithms are systematically evaluated across varying fire scales, showing that the improved automatic threshold method achieves the best performance on GF-4 imagery with an F-score of 0.915 (95% CI: 0.8725–0.9524), while the U-Net deep learning algorithm yields the highest F-score of 0.921 (95% CI: 0.8537–0.9739) on Landsat 8 imagery. All methods demonstrate robust performance and generalizability across diverse scenarios. Second, data-driven scheduling technology is developed to automatically initiate preprocessing and fire detection tasks, significantly reducing fire discovery time. Finally, an integrated framework of multi-source remote sensing data, advanced detection algorithms, and a user-friendly visualization interface is proposed. This framework enables all-weather, fully automated forest fire monitoring and early warning, facilitating dynamic tracking of fire evolution and precise fire line localization through the cross-application of heterogeneous data sources. The framework’s effectiveness and practicality are validated through wildfire cases in two regions of Yunnan Province, offering scalable technical support for improving early detection of and rapid response to forest fires. |
|---|---|
| Bibliografie: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ISSN: | 2571-6255 2571-6255 |
| DOI: | 10.3390/fire8090344 |