A Framework for Low-Carbon Container Multimodal Transport Route Optimization Under Hybrid Uncertainty: Model and Case Study
To enhance the operational efficiency of container multimodal transportation and mitigate carbon emissions during freight transit, this study investigates carbon emission-conscious multimodal transportation route optimization models and solution methodologies. Addressing the path optimization challe...
Saved in:
| Published in: | Applied sciences Vol. 15; no. 12; p. 6894 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2025
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To enhance the operational efficiency of container multimodal transportation and mitigate carbon emissions during freight transit, this study investigates carbon emission-conscious multimodal transportation route optimization models and solution methodologies. Addressing the path optimization challenges under uncertain conditions, triangular fuzzy numbers are employed to characterize transportation time uncertainty, while a scenario-based robust regret model is formulated to address freight price volatility. Concurrently, the temporal value attributes of cargo are incorporated by transforming transportation duration into temporal costs within the model framework. Through the implementation of four distinct low-carbon policies, carbon emissions are either converted into cost metrics or established as constraint parameters, thereby constructing an optimization model with total cost minimization as the objective function. For model resolution, fuzzy chance-constrained programming is adopted for defuzzification processing. Subsequently, a multi-strategy improved whale optimization algorithm (WOA) is developed to solve the formulated model. Numerical case studies are conducted to validate the proposed methodology through comparative analysis with conventional WOA implementations, demonstrating the algorithm’s enhanced computational efficiency. The experimental results confirm the model’s capability to adapt multimodal transportation schedules for cargo with varying temporal value attributes and effectively reduce CO2 emissions under different carbon reduction policies. This research establishes a comprehensive decision-making framework that provides logistics enterprises with a valuable reference for optimizing low-carbon multimodal transportation operations. |
|---|---|
| Bibliography: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app15126894 |