The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations

In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Ramanujan journal Ročník 58; číslo 4; s. 1075 - 1093
Hlavní autoři: Hajdu, L., Papp, Á., Tijdeman, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer Nature B.V
Témata:
ISSN:1382-4090, 1572-9303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation f A ( x ) = P ( y ) where P ( y ) ∈ Q [ y ] and on shifted power values of f A ( x ) .
AbstractList In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation f A ( x ) = P ( y ) where P ( y ) ∈ Q [ y ] and on shifted power values of f A ( x ) .
In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of $$A \subseteq \{1, \dots , n\}$$ A ⊆ { 1 , ⋯ , n } in k -sets such that the first $$k-1$$ k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial $$f_A(x) := \prod _{x \in A} (x-a)$$ f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation $$f_A(x)=P(y)$$ f A ( x ) = P ( y ) where $$P(y)\in \mathbb {Q}[y]$$ P ( y ) ∈ Q [ y ] and on shifted power values of $$f_A(x)$$ f A ( x ) .
In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A⊆{1,⋯,n} in k-sets such that the first k-1 symmetric polynomials of the elements of the k-sets coincide. Then we apply this result to derive a decomposability result for the polynomial fA(x):=∏x∈A(x-a). Finally we prove two theorems on the structure of the solutions (x, y) of the Diophantine equation fA(x)=P(y) where P(y)∈Q[y] and on shifted power values of fA(x).
Author Tijdeman, R.
Papp, Á.
Hajdu, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Hajdu
  fullname: Hajdu, L.
  organization: Institute of Mathematics, University of Debrecen, Alfréd Rényi Institute of Mathematics
– sequence: 2
  givenname: Á.
  orcidid: 0000-0002-4587-4428
  surname: Papp
  fullname: Papp, Á.
  email: papp.agoston@science.unideb.hu
  organization: Institute of Mathematics, University of Debrecen
– sequence: 3
  givenname: R.
  surname: Tijdeman
  fullname: Tijdeman, R.
  organization: Mathematical Institute, Leiden University
BookMark eNp9kLtOAzEQRS0UJBLgB6hWomXBj3W8LlEIDwkJilAbrzNLjDb2xnaK7fgH_pAvwRAkJAqqmeKemaszQSPnHSB0QvA5wVhcREIIkyWmtMSYc16KPTQmXNBSMsxGeWc1LSss8QGaxPiKMa4wE2P0vFhB8Rj8dgXp4-19oUMY8pxH41Mq-uCbDtZnhXVLMH7d-6gb29k0FL4tet8Nzq-t7mKh3bK4sr5faZesgwI2W52sd_EI7bc5AMc_8xA9Xc8Xs9vy_uHmbnZ5Xxo2ZakUbdNwoFgTQUTLpDANAGuJNrWmU8q15ExoiQ0ILqXklSambpdQATSCtJQdotPd3dx5s4WY1KvfBpdfKjqta0IrJkhO1buUCT7GAK0yNn0XTUHbThGsvnyqnU-Vfapvn0pklP5B-2DXOgz_Q2wHxRx2LxB-W_1DfQJsFI3p
CitedBy_id crossref_primary_10_1016_j_jnt_2022_05_004
crossref_primary_10_1112_jlms_12746
Cites_doi 10.4064/aa-31-2-199-204
10.4007/annals.2020.191.2.2
10.1006/jnth.1997.2109
10.1016/S0019-3577(03)90069-3
10.4064/aa-95-3-261-288
10.4064/aa129-1-1
10.1023/A:1025480729778
10.1090/S0002-9947-1922-1501189-9
10.4064/aa113-4-1
10.1112/jlms/s1-26.3.176
10.4064/aa-80-3-289-295
10.1145/2644288.2644292
10.4064/aa99-4-5
10.1007/BF01974110
10.1016/j.jnt.2019.08.007
10.3390/math7030227
10.1093/qmath/12.1.304
10.1007/s00605-020-01422-7
10.1515/9783110285581.11
10.5486/PMD.2004.2913
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11139-022-00555-7
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 1093
ExternalDocumentID 10_1007_s11139_022_00555_7
GrantInformation_xml – fundername: Hungarian Scientific Research Fund
  grantid: 115479; 128088
  funderid: http://dx.doi.org/10.13039/501100003549
– fundername: Hungarian Scientific Research Fund
  grantid: 130909
  funderid: http://dx.doi.org/10.13039/501100003549
– fundername: Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
  grantid: UNKP-20-3 New National Excellence Program
  funderid: http://dx.doi.org/10.13039/501100012550
– fundername: European Social Fund
  grantid: EFOP-3.6.1-16-2016-00022; EFOP-3.6.2-16-2017- 00015
  funderid: http://dx.doi.org/10.13039/501100004895
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c363t-7fbb5e20a1717f397cbee3f1ac8a2625a9537a90ce7599954a1c8fde4eeb71f23
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780720200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Thu Sep 25 00:39:50 EDT 2025
Sat Nov 29 03:20:59 EST 2025
Tue Nov 18 21:42:01 EST 2025
Fri Feb 21 02:45:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Products of consecutive integers
Indecomposability of polynomials
Symmetric polynomials
The Prouhet–Tarry–Escott problem
Polynomial values
11D41
11B75
Partitions of
11P05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7fbb5e20a1717f397cbee3f1ac8a2625a9537a90ce7599954a1c8fde4eeb71f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4587-4428
OpenAccessLink https://link.springer.com/10.1007/s11139-022-00555-7
PQID 2688124371
PQPubID 2043831
PageCount 19
ParticipantIDs proquest_journals_2688124371
crossref_citationtrail_10_1007_s11139_022_00555_7
crossref_primary_10_1007_s11139_022_00555_7
springer_journals_10_1007_s11139_022_00555_7
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Saradha, Shorey (CR20) 2001; 99
Kulkarni, Sury (CR16) 2003; 14
CR15
CR13
Erdős (CR9) 1951; 26
Erdős, Selfridge (CR10) 1975; 19
Fried (CR11) 1973; 264
Raghavendran, Varayanan (CR18) 2019; 7
Brindza (CR6) 1984; 44
Fried (CR12) 1999
Blankertz (CR5) 2014; 48:1
Schinzel, Tijdeman (CR23) 1976; 31
de Weger (CR8) 1997; 63
CR2
Bilu, Tichy (CR4) 2000; 95
Ritt (CR19) 1922; 23
Saradha, Shorey (CR21) 2003; 138
CR7
Saradha, Shorey (CR22) 2007; 129
Lidl, Mullen, Turnwald (CR17) 1993
CR26
CR25
CR24
Bilu, Kulkarni, Sury (CR3) 2004; 113
Bennett, Siksek (CR1) 2020; 191
Győry (CR14) 1997; 80
JF Ritt (555_CR19) 1922; 23
555_CR24
555_CR2
555_CR7
R Blankertz (555_CR5) 2014; 48:1
555_CR26
555_CR25
P Erdős (555_CR10) 1975; 19
N Saradha (555_CR20) 2001; 99
N Saradha (555_CR21) 2003; 138
R Lidl (555_CR17) 1993
A Schinzel (555_CR23) 1976; 31
K Győry (555_CR14) 1997; 80
Yu Bilu (555_CR3) 2004; 113
S Raghavendran (555_CR18) 2019; 7
M Fried (555_CR12) 1999
555_CR13
N Saradha (555_CR22) 2007; 129
P Erdős (555_CR9) 1951; 26
B de Weger (555_CR8) 1997; 63
555_CR15
B Brindza (555_CR6) 1984; 44
M Bennett (555_CR1) 2020; 191
M Fried (555_CR11) 1973; 264
M Kulkarni (555_CR16) 2003; 14
Yu Bilu (555_CR4) 2000; 95
References_xml – volume: 31
  start-page: 199
  year: 1976
  end-page: 204
  ident: CR23
  article-title: On the equation
  publication-title: Acta Arith.
  doi: 10.4064/aa-31-2-199-204
– volume: 191
  start-page: 355
  year: 2020
  end-page: 392
  ident: CR1
  article-title: A conjecture of Erdős, supersingular primes and short character sums
  publication-title: Ann. Math.
  doi: 10.4007/annals.2020.191.2.2
– ident: CR2
– volume: 63
  start-page: 373
  year: 1997
  end-page: 386
  ident: CR8
  article-title: Equal binomial coefficients: some elementary considerations
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1997.2109
– volume: 14
  start-page: 35
  year: 2003
  end-page: 44
  ident: CR16
  article-title: On the Diophantine equation
  publication-title: Indag. Math.
  doi: 10.1016/S0019-3577(03)90069-3
– volume: 19
  start-page: 292
  year: 1975
  end-page: 301
  ident: CR10
  article-title: The product of consecutive integers is never a power
  publication-title: Ill. J. Math.
– volume: 95
  start-page: 261
  year: 2000
  end-page: 288
  ident: CR4
  article-title: The Diophantine equation
  publication-title: Acta Arith.
  doi: 10.4064/aa-95-3-261-288
– volume: 129
  start-page: 1
  year: 2007
  end-page: 21
  ident: CR22
  article-title: On the equation with
  publication-title: Acta Arith.
  doi: 10.4064/aa129-1-1
– volume: 138
  start-page: 113
  year: 2003
  end-page: 124
  ident: CR21
  article-title: Almost squares and factorizations in consecutive integers
  publication-title: Compositio Math.
  doi: 10.1023/A:1025480729778
– volume: 7
  start-page: 227
  year: 2019
  ident: CR18
  article-title: The Prouhet Tarry Escott problem: a review
  publication-title: MDPI Math.
– ident: CR25
– start-page: 169
  year: 1999
  end-page: 228
  ident: CR12
  publication-title: Variables Separated Polynomials, the Genus 0 Problem and Moduli Spaces, Number Theory in Progress
– volume: 23
  start-page: 51
  year: 1922
  end-page: 66
  ident: CR19
  article-title: Prime and composite polynomials
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1922-1501189-9
– volume: 264
  start-page: 40
  year: 1973
  end-page: 55
  ident: CR11
  article-title: On a theorem of Ritt and related Diophantine problems
  publication-title: J. Reine Angew. Math.
– volume: 113
  start-page: 303
  year: 2004
  end-page: 308
  ident: CR3
  article-title: The Diophantine equation
  publication-title: Acta Arith.
  doi: 10.4064/aa113-4-1
– ident: CR15
– ident: CR13
– volume: 26
  start-page: 176
  year: 1951
  end-page: 178
  ident: CR9
  article-title: On a Diophantine equation
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-26.3.176
– volume: 80
  start-page: 289
  year: 1997
  end-page: 295
  ident: CR14
  article-title: On the Diophantine equation
  publication-title: Acta Arith.
  doi: 10.4064/aa-80-3-289-295
– volume: 48:1
  start-page: 13
  issue: 187
  year: 2014
  end-page: 23
  ident: CR5
  article-title: A polynomial time algorithm for computing all minimal decompositions of a polynomial
  publication-title: ACM Commun. Comput. Algebra
  doi: 10.1145/2644288.2644292
– ident: CR7
– year: 1993
  ident: CR17
  publication-title: Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics
– volume: 99
  start-page: 363
  year: 2001
  end-page: 388
  ident: CR20
  article-title: Almost perfect powers in arithmetic progression
  publication-title: Acta Arith.
  doi: 10.4064/aa99-4-5
– ident: CR26
– volume: 44
  start-page: 133
  year: 1984
  end-page: 139
  ident: CR6
  article-title: On -integral solutions of the equation
  publication-title: Acta Math. Hungar.
  doi: 10.1007/BF01974110
– ident: CR24
– volume-title: Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics
  year: 1993
  ident: 555_CR17
– volume: 44
  start-page: 133
  year: 1984
  ident: 555_CR6
  publication-title: Acta Math. Hungar.
  doi: 10.1007/BF01974110
– ident: 555_CR25
– ident: 555_CR13
  doi: 10.1016/j.jnt.2019.08.007
– volume: 7
  start-page: 227
  year: 2019
  ident: 555_CR18
  publication-title: MDPI Math.
  doi: 10.3390/math7030227
– volume: 19
  start-page: 292
  year: 1975
  ident: 555_CR10
  publication-title: Ill. J. Math.
– ident: 555_CR7
  doi: 10.1093/qmath/12.1.304
– volume: 113
  start-page: 303
  year: 2004
  ident: 555_CR3
  publication-title: Acta Arith.
  doi: 10.4064/aa113-4-1
– volume: 26
  start-page: 176
  year: 1951
  ident: 555_CR9
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-26.3.176
– volume: 80
  start-page: 289
  year: 1997
  ident: 555_CR14
  publication-title: Acta Arith.
  doi: 10.4064/aa-80-3-289-295
– volume: 95
  start-page: 261
  year: 2000
  ident: 555_CR4
  publication-title: Acta Arith.
  doi: 10.4064/aa-95-3-261-288
– ident: 555_CR26
– volume: 48:1
  start-page: 13
  issue: 187
  year: 2014
  ident: 555_CR5
  publication-title: ACM Commun. Comput. Algebra
  doi: 10.1145/2644288.2644292
– volume: 264
  start-page: 40
  year: 1973
  ident: 555_CR11
  publication-title: J. Reine Angew. Math.
– ident: 555_CR15
  doi: 10.1007/s00605-020-01422-7
– volume: 31
  start-page: 199
  year: 1976
  ident: 555_CR23
  publication-title: Acta Arith.
  doi: 10.4064/aa-31-2-199-204
– volume: 63
  start-page: 373
  year: 1997
  ident: 555_CR8
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1997.2109
– ident: 555_CR2
  doi: 10.1515/9783110285581.11
– volume: 23
  start-page: 51
  year: 1922
  ident: 555_CR19
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1922-1501189-9
– volume: 138
  start-page: 113
  year: 2003
  ident: 555_CR21
  publication-title: Compositio Math.
  doi: 10.1023/A:1025480729778
– ident: 555_CR24
  doi: 10.5486/PMD.2004.2913
– volume: 99
  start-page: 363
  year: 2001
  ident: 555_CR20
  publication-title: Acta Arith.
  doi: 10.4064/aa99-4-5
– volume: 14
  start-page: 35
  year: 2003
  ident: 555_CR16
  publication-title: Indag. Math.
  doi: 10.1016/S0019-3577(03)90069-3
– volume: 129
  start-page: 1
  year: 2007
  ident: 555_CR22
  publication-title: Acta Arith.
  doi: 10.4064/aa129-1-1
– volume: 191
  start-page: 355
  year: 2020
  ident: 555_CR1
  publication-title: Ann. Math.
  doi: 10.4007/annals.2020.191.2.2
– start-page: 169
  volume-title: Variables Separated Polynomials, the Genus 0 Problem and Moduli Spaces, Number Theory in Progress
  year: 1999
  ident: 555_CR12
SSID ssj0004037
Score 2.2723258
Snippet In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such...
In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of $$A \subseteq \{1, \dots , n\}$$ A ⊆...
In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A⊆{1,⋯,n} in k-sets such that the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1075
SubjectTerms Combinatorics
Diophantine equation
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Polynomials
Title The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations
URI https://link.springer.com/article/10.1007/s11139-022-00555-7
https://www.proquest.com/docview/2688124371
Volume 58
WOSCitedRecordID wos000780720200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagMMDAP6JQkAc2GimOkzgeEbRigKqCUnULjmOrlaqkJClSN96BN-RJsPPTCARIsCRDHCu6O-e-s---A-AcmdSSHneNkBJq2C5mRhC46mK51LMFwiTfGhjekl7PG41ovywKS6ts9-pIMv9T18VuSKEVQ2efa-IoxyCrYE25O08vx_uHYV0NaeZMmZpcT0VH1CxLZb6f47M7qjHml2PR3Nt0t__3nTtgq0SX8LIwh12wIqI9sHm3pGZN98GTMgzYT-L5WGTvr28DliQLde-kmqQBlv1l2lCzKOp087ig4M0WMJZwFk8XuoxZmSxkUQivJ_FszHSvCQHFc0Eanh6Ax25ncHVjlG0WDI5dnBlEBoEjLJMhFdpJhU94IASWiHGPWSo8YtTBhFGTC-JQTR_HEPdkKGwhAoKkhQ9BI4ojcQSgVHhCQUDbU3GvbTJL2YHrSBbSkGBJhGwCVEnb5yUHuW6FMfVr9mQtPV9Jz8-l55MmuFi-MysYOH4d3aqU6JerMfUt19M4BhPUBO1KafXjn2c7_tvwE7Bh5XrX-YEt0MiSuTgF6_wlm6TJWW6lHz7U4rE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4QwEJ3oaqIe_DaurtqDNyWhFCg9Gt2NxnVjdDXesECb3cTACmiyN_-D_9BfYsuCRKMmeoEDpSHTB_OGzrwB2Mcms6QXukbEKDNsl3AjCFx1sFzm2QITWvwauO3SXs-7u2OXZVFYVmW7V1uSxZe6LnbDiq0YOvtcC0c5Bp2GGVt5LJ3Id3V9W1dDmoVSphbXU9ERM8tSme_n-OyOao75ZVu08Dadpf895zIsluwSHU3gsAJTIl6FhYsPadZsDe4VMNBlmjwNRP728trnaTpW53amRRpQ2V_mEGkVRZ1unkwkePMxSiQaJQ9jXcasIIt4HKGTYTIacN1rQiDxOBENz9bhptPuH58aZZsFIyQuyQ0qg8ARlsmxCu2k4idhIASRmIcet1R4xJlDKGdmKKjDtHwcx6EnI2ELEVAsLbIBjTiJxSYgqfiEooC2p-Je2-SWwoHrSB6xiBJJhWwCrqzth6UGuW6F8eDX6snaer6ynl9Yz6dNOPi4ZzRR4Ph1dKtaRL98GzPfcj3NYwjFTTisFq2-_PNsW38bvgdzp_2Lrt89651vw7xVYEDnCragkadPYgdmw-d8mKW7BWLfAeeT5ZU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT4QwEMcnvmL04Nu4umoP3pRIKVB6NOpGo2428RFvWKDNbrKBFdBkb34Hv6GfxBbYRY2aGC9woBAyHdL_0JnfAOxhk1nSC10jYpQZtku4EQSuOlgu82yBCS1-Ddxd0nbbu79nnQ9V_EW2-2hLsqxp0JSmOD8cRPKwLnzDSrkYOhNdQ6Qcg07CtK2bBul4_fqurow0C2qmBu2pSImZVdnM98_4vDTVevPLFmmx8rQW___OS7BQqU50VLrJMkyIeAXmr8bI1mwVHpTDoE6aPHVF_vbyesPTdKjOp5mGN6Cq78wB0nRFnYaelGjefIgSiQZJf6jLm5UrIx5H6KSXDLpc96AQSDyWMPFsDW5bpzfHZ0bVfsEIiUtyg8ogcIRlcqxCPql0SxgIQSTmocctFTZx5hDKmRkK6jCNleM49GQkbCECiqVF1mEqTmKxAUgqnaGkoe2peNg2uaX8w3Ukj1hEiaRCNgCPLO-HFZtct8jo-zVVWVvPV9bzC-v5tAH743sGJZnj19HN0YT61Vea-ZbraX1DKG7AwWgC68s_P23zb8N3YbZz0vIvz9sXWzBnFS6gUwibMJWnT2IbZsLnvJelO4XzvgOkt-55
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Prouhet%E2%80%93Tarry%E2%80%93Escott+problem%2C+indecomposability+of+polynomials+and+Diophantine+equations&rft.jtitle=The+Ramanujan+journal&rft.au=Hajdu%2C+L.&rft.au=Papp%2C+%C3%81.&rft.au=Tijdeman%2C+R.&rft.date=2022-08-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=58&rft.issue=4&rft.spage=1075&rft.epage=1093&rft_id=info:doi/10.1007%2Fs11139-022-00555-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_022_00555_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon