The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations

In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Ramanujan journal Ročník 58; číslo 4; s. 1075 - 1093
Hlavní autoři: Hajdu, L., Papp, Á., Tijdeman, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer Nature B.V
Témata:
ISSN:1382-4090, 1572-9303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation f A ( x ) = P ( y ) where P ( y ) ∈ Q [ y ] and on shifted power values of f A ( x ) .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-022-00555-7