The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations
In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result...
Gespeichert in:
| Veröffentlicht in: | The Ramanujan journal Jg. 58; H. 4; S. 1075 - 1093 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-4090, 1572-9303 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of
A
⊆
{
1
,
⋯
,
n
}
in
k
-sets such that the first
k
-
1
symmetric polynomials of the elements of the
k
-sets coincide. Then we apply this result to derive a decomposability result for the polynomial
f
A
(
x
)
:
=
∏
x
∈
A
(
x
-
a
)
. Finally we prove two theorems on the structure of the solutions (
x
,
y
) of the Diophantine equation
f
A
(
x
)
=
P
(
y
)
where
P
(
y
)
∈
Q
[
y
]
and on shifted power values of
f
A
(
x
)
. |
|---|---|
| AbstractList | In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of
A
⊆
{
1
,
⋯
,
n
}
in
k
-sets such that the first
k
-
1
symmetric polynomials of the elements of the
k
-sets coincide. Then we apply this result to derive a decomposability result for the polynomial
f
A
(
x
)
:
=
∏
x
∈
A
(
x
-
a
)
. Finally we prove two theorems on the structure of the solutions (
x
,
y
) of the Diophantine equation
f
A
(
x
)
=
P
(
y
)
where
P
(
y
)
∈
Q
[
y
]
and on shifted power values of
f
A
(
x
)
. In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of $$A \subseteq \{1, \dots , n\}$$ A ⊆ { 1 , ⋯ , n } in k -sets such that the first $$k-1$$ k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial $$f_A(x) := \prod _{x \in A} (x-a)$$ f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x , y ) of the Diophantine equation $$f_A(x)=P(y)$$ f A ( x ) = P ( y ) where $$P(y)\in \mathbb {Q}[y]$$ P ( y ) ∈ Q [ y ] and on shifted power values of $$f_A(x)$$ f A ( x ) . In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A⊆{1,⋯,n} in k-sets such that the first k-1 symmetric polynomials of the elements of the k-sets coincide. Then we apply this result to derive a decomposability result for the polynomial fA(x):=∏x∈A(x-a). Finally we prove two theorems on the structure of the solutions (x, y) of the Diophantine equation fA(x)=P(y) where P(y)∈Q[y] and on shifted power values of fA(x). |
| Author | Tijdeman, R. Papp, Á. Hajdu, L. |
| Author_xml | – sequence: 1 givenname: L. surname: Hajdu fullname: Hajdu, L. organization: Institute of Mathematics, University of Debrecen, Alfréd Rényi Institute of Mathematics – sequence: 2 givenname: Á. orcidid: 0000-0002-4587-4428 surname: Papp fullname: Papp, Á. email: papp.agoston@science.unideb.hu organization: Institute of Mathematics, University of Debrecen – sequence: 3 givenname: R. surname: Tijdeman fullname: Tijdeman, R. organization: Mathematical Institute, Leiden University |
| BookMark | eNp9kLtOAzEQRS0UJBLgB6hWomXBj3W8LlEIDwkJilAbrzNLjDb2xnaK7fgH_pAvwRAkJAqqmeKemaszQSPnHSB0QvA5wVhcREIIkyWmtMSYc16KPTQmXNBSMsxGeWc1LSss8QGaxPiKMa4wE2P0vFhB8Rj8dgXp4-19oUMY8pxH41Mq-uCbDtZnhXVLMH7d-6gb29k0FL4tet8Nzq-t7mKh3bK4sr5faZesgwI2W52sd_EI7bc5AMc_8xA9Xc8Xs9vy_uHmbnZ5Xxo2ZakUbdNwoFgTQUTLpDANAGuJNrWmU8q15ExoiQ0ILqXklSambpdQATSCtJQdotPd3dx5s4WY1KvfBpdfKjqta0IrJkhO1buUCT7GAK0yNn0XTUHbThGsvnyqnU-Vfapvn0pklP5B-2DXOgz_Q2wHxRx2LxB-W_1DfQJsFI3p |
| CitedBy_id | crossref_primary_10_1016_j_jnt_2022_05_004 crossref_primary_10_1112_jlms_12746 |
| Cites_doi | 10.4064/aa-31-2-199-204 10.4007/annals.2020.191.2.2 10.1006/jnth.1997.2109 10.1016/S0019-3577(03)90069-3 10.4064/aa-95-3-261-288 10.4064/aa129-1-1 10.1023/A:1025480729778 10.1090/S0002-9947-1922-1501189-9 10.4064/aa113-4-1 10.1112/jlms/s1-26.3.176 10.4064/aa-80-3-289-295 10.1145/2644288.2644292 10.4064/aa99-4-5 10.1007/BF01974110 10.1016/j.jnt.2019.08.007 10.3390/math7030227 10.1093/qmath/12.1.304 10.1007/s00605-020-01422-7 10.1515/9783110285581.11 10.5486/PMD.2004.2913 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11139-022-00555-7 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1572-9303 |
| EndPage | 1093 |
| ExternalDocumentID | 10_1007_s11139_022_00555_7 |
| GrantInformation_xml | – fundername: Hungarian Scientific Research Fund grantid: 115479; 128088 funderid: http://dx.doi.org/10.13039/501100003549 – fundername: Hungarian Scientific Research Fund grantid: 130909 funderid: http://dx.doi.org/10.13039/501100003549 – fundername: Nemzeti Kutatási, Fejlesztési és Innovaciós Alap grantid: UNKP-20-3 New National Excellence Program funderid: http://dx.doi.org/10.13039/501100012550 – fundername: European Social Fund grantid: EFOP-3.6.1-16-2016-00022; EFOP-3.6.2-16-2017- 00015 funderid: http://dx.doi.org/10.13039/501100004895 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c363t-7fbb5e20a1717f397cbee3f1ac8a2625a9537a90ce7599954a1c8fde4eeb71f23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780720200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-4090 |
| IngestDate | Thu Sep 25 00:39:50 EDT 2025 Sat Nov 29 03:20:59 EST 2025 Tue Nov 18 21:42:01 EST 2025 Fri Feb 21 02:45:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Products of consecutive integers Indecomposability of polynomials Symmetric polynomials The Prouhet–Tarry–Escott problem Polynomial values 11D41 11B75 Partitions of 11P05 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-7fbb5e20a1717f397cbee3f1ac8a2625a9537a90ce7599954a1c8fde4eeb71f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4587-4428 |
| OpenAccessLink | https://link.springer.com/10.1007/s11139-022-00555-7 |
| PQID | 2688124371 |
| PQPubID | 2043831 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2688124371 crossref_citationtrail_10_1007_s11139_022_00555_7 crossref_primary_10_1007_s11139_022_00555_7 springer_journals_10_1007_s11139_022_00555_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
| PublicationTitle | The Ramanujan journal |
| PublicationTitleAbbrev | Ramanujan J |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Saradha, Shorey (CR20) 2001; 99 Kulkarni, Sury (CR16) 2003; 14 CR15 CR13 Erdős (CR9) 1951; 26 Erdős, Selfridge (CR10) 1975; 19 Fried (CR11) 1973; 264 Raghavendran, Varayanan (CR18) 2019; 7 Brindza (CR6) 1984; 44 Fried (CR12) 1999 Blankertz (CR5) 2014; 48:1 Schinzel, Tijdeman (CR23) 1976; 31 de Weger (CR8) 1997; 63 CR2 Bilu, Tichy (CR4) 2000; 95 Ritt (CR19) 1922; 23 Saradha, Shorey (CR21) 2003; 138 CR7 Saradha, Shorey (CR22) 2007; 129 Lidl, Mullen, Turnwald (CR17) 1993 CR26 CR25 CR24 Bilu, Kulkarni, Sury (CR3) 2004; 113 Bennett, Siksek (CR1) 2020; 191 Győry (CR14) 1997; 80 JF Ritt (555_CR19) 1922; 23 555_CR24 555_CR2 555_CR7 R Blankertz (555_CR5) 2014; 48:1 555_CR26 555_CR25 P Erdős (555_CR10) 1975; 19 N Saradha (555_CR20) 2001; 99 N Saradha (555_CR21) 2003; 138 R Lidl (555_CR17) 1993 A Schinzel (555_CR23) 1976; 31 K Győry (555_CR14) 1997; 80 Yu Bilu (555_CR3) 2004; 113 S Raghavendran (555_CR18) 2019; 7 M Fried (555_CR12) 1999 555_CR13 N Saradha (555_CR22) 2007; 129 P Erdős (555_CR9) 1951; 26 B de Weger (555_CR8) 1997; 63 555_CR15 B Brindza (555_CR6) 1984; 44 M Bennett (555_CR1) 2020; 191 M Fried (555_CR11) 1973; 264 M Kulkarni (555_CR16) 2003; 14 Yu Bilu (555_CR4) 2000; 95 |
| References_xml | – volume: 31 start-page: 199 year: 1976 end-page: 204 ident: CR23 article-title: On the equation publication-title: Acta Arith. doi: 10.4064/aa-31-2-199-204 – volume: 191 start-page: 355 year: 2020 end-page: 392 ident: CR1 article-title: A conjecture of Erdős, supersingular primes and short character sums publication-title: Ann. Math. doi: 10.4007/annals.2020.191.2.2 – ident: CR2 – volume: 63 start-page: 373 year: 1997 end-page: 386 ident: CR8 article-title: Equal binomial coefficients: some elementary considerations publication-title: J. Number Theory doi: 10.1006/jnth.1997.2109 – volume: 14 start-page: 35 year: 2003 end-page: 44 ident: CR16 article-title: On the Diophantine equation publication-title: Indag. Math. doi: 10.1016/S0019-3577(03)90069-3 – volume: 19 start-page: 292 year: 1975 end-page: 301 ident: CR10 article-title: The product of consecutive integers is never a power publication-title: Ill. J. Math. – volume: 95 start-page: 261 year: 2000 end-page: 288 ident: CR4 article-title: The Diophantine equation publication-title: Acta Arith. doi: 10.4064/aa-95-3-261-288 – volume: 129 start-page: 1 year: 2007 end-page: 21 ident: CR22 article-title: On the equation with publication-title: Acta Arith. doi: 10.4064/aa129-1-1 – volume: 138 start-page: 113 year: 2003 end-page: 124 ident: CR21 article-title: Almost squares and factorizations in consecutive integers publication-title: Compositio Math. doi: 10.1023/A:1025480729778 – volume: 7 start-page: 227 year: 2019 ident: CR18 article-title: The Prouhet Tarry Escott problem: a review publication-title: MDPI Math. – ident: CR25 – start-page: 169 year: 1999 end-page: 228 ident: CR12 publication-title: Variables Separated Polynomials, the Genus 0 Problem and Moduli Spaces, Number Theory in Progress – volume: 23 start-page: 51 year: 1922 end-page: 66 ident: CR19 article-title: Prime and composite polynomials publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1922-1501189-9 – volume: 264 start-page: 40 year: 1973 end-page: 55 ident: CR11 article-title: On a theorem of Ritt and related Diophantine problems publication-title: J. Reine Angew. Math. – volume: 113 start-page: 303 year: 2004 end-page: 308 ident: CR3 article-title: The Diophantine equation publication-title: Acta Arith. doi: 10.4064/aa113-4-1 – ident: CR15 – ident: CR13 – volume: 26 start-page: 176 year: 1951 end-page: 178 ident: CR9 article-title: On a Diophantine equation publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s1-26.3.176 – volume: 80 start-page: 289 year: 1997 end-page: 295 ident: CR14 article-title: On the Diophantine equation publication-title: Acta Arith. doi: 10.4064/aa-80-3-289-295 – volume: 48:1 start-page: 13 issue: 187 year: 2014 end-page: 23 ident: CR5 article-title: A polynomial time algorithm for computing all minimal decompositions of a polynomial publication-title: ACM Commun. Comput. Algebra doi: 10.1145/2644288.2644292 – ident: CR7 – year: 1993 ident: CR17 publication-title: Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics – volume: 99 start-page: 363 year: 2001 end-page: 388 ident: CR20 article-title: Almost perfect powers in arithmetic progression publication-title: Acta Arith. doi: 10.4064/aa99-4-5 – ident: CR26 – volume: 44 start-page: 133 year: 1984 end-page: 139 ident: CR6 article-title: On -integral solutions of the equation publication-title: Acta Math. Hungar. doi: 10.1007/BF01974110 – ident: CR24 – volume-title: Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics year: 1993 ident: 555_CR17 – volume: 44 start-page: 133 year: 1984 ident: 555_CR6 publication-title: Acta Math. Hungar. doi: 10.1007/BF01974110 – ident: 555_CR25 – ident: 555_CR13 doi: 10.1016/j.jnt.2019.08.007 – volume: 7 start-page: 227 year: 2019 ident: 555_CR18 publication-title: MDPI Math. doi: 10.3390/math7030227 – volume: 19 start-page: 292 year: 1975 ident: 555_CR10 publication-title: Ill. J. Math. – ident: 555_CR7 doi: 10.1093/qmath/12.1.304 – volume: 113 start-page: 303 year: 2004 ident: 555_CR3 publication-title: Acta Arith. doi: 10.4064/aa113-4-1 – volume: 26 start-page: 176 year: 1951 ident: 555_CR9 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s1-26.3.176 – volume: 80 start-page: 289 year: 1997 ident: 555_CR14 publication-title: Acta Arith. doi: 10.4064/aa-80-3-289-295 – volume: 95 start-page: 261 year: 2000 ident: 555_CR4 publication-title: Acta Arith. doi: 10.4064/aa-95-3-261-288 – ident: 555_CR26 – volume: 48:1 start-page: 13 issue: 187 year: 2014 ident: 555_CR5 publication-title: ACM Commun. Comput. Algebra doi: 10.1145/2644288.2644292 – volume: 264 start-page: 40 year: 1973 ident: 555_CR11 publication-title: J. Reine Angew. Math. – ident: 555_CR15 doi: 10.1007/s00605-020-01422-7 – volume: 31 start-page: 199 year: 1976 ident: 555_CR23 publication-title: Acta Arith. doi: 10.4064/aa-31-2-199-204 – volume: 63 start-page: 373 year: 1997 ident: 555_CR8 publication-title: J. Number Theory doi: 10.1006/jnth.1997.2109 – ident: 555_CR2 doi: 10.1515/9783110285581.11 – volume: 23 start-page: 51 year: 1922 ident: 555_CR19 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1922-1501189-9 – volume: 138 start-page: 113 year: 2003 ident: 555_CR21 publication-title: Compositio Math. doi: 10.1023/A:1025480729778 – ident: 555_CR24 doi: 10.5486/PMD.2004.2913 – volume: 99 start-page: 363 year: 2001 ident: 555_CR20 publication-title: Acta Arith. doi: 10.4064/aa99-4-5 – volume: 14 start-page: 35 year: 2003 ident: 555_CR16 publication-title: Indag. Math. doi: 10.1016/S0019-3577(03)90069-3 – volume: 129 start-page: 1 year: 2007 ident: 555_CR22 publication-title: Acta Arith. doi: 10.4064/aa129-1-1 – volume: 191 start-page: 355 year: 2020 ident: 555_CR1 publication-title: Ann. Math. doi: 10.4007/annals.2020.191.2.2 – start-page: 169 volume-title: Variables Separated Polynomials, the Genus 0 Problem and Moduli Spaces, Number Theory in Progress year: 1999 ident: 555_CR12 |
| SSID | ssj0004037 |
| Score | 2.2723258 |
| Snippet | In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of
A
⊆
{
1
,
⋯
,
n
}
in
k
-sets such... In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of $$A \subseteq \{1, \dots , n\}$$ A ⊆... In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A⊆{1,⋯,n} in k-sets such that the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1075 |
| SubjectTerms | Combinatorics Diophantine equation Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematics Mathematics and Statistics Number Theory Polynomials |
| Title | The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations |
| URI | https://link.springer.com/article/10.1007/s11139-022-00555-7 https://www.proquest.com/docview/2688124371 |
| Volume | 58 |
| WOSCitedRecordID | wos000780720200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004037 issn: 1382-4090 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEIAtKAww8I8oFOSBjUaK4yS2RwStWKgqKKhbsBNbrVQlJUmRuvEOvCFPgp0mjUCABFOGOJZ1Pufu5LvvADi3XSwdLCMdmyhsuZGNLeZybCnXF8TzKBUoKppNkF6PDoesXxaFZVW2e3UlWfyp62I3pL0Vy2SfG3CUZ5FVsKbNHTXH8e7-sa6GtAtSpoHr6RUwuyyV-X6Oz-ao9jG_XIsW1qa7_b917oCt0ruElwt12AUrMt4Dm7dLNGu2D560YsB-msxGMn9_fRvwNJ3rZyczkAZY9pdpQ0NRNOnmyQLBm89houA0mcxNGbNWWcjjCF6Pk-mIm14TEsrnBTQ8OwAP3c7g6sYq2yxYIfZxbhElhCcdmyMd2intn4RCSqwQDyl3dHjEmYcJZ3YoiccMPo6jkKpIulIKgpSDD0EjTmJ5BKDHFItC6gphS5cJfdYRjiJhckl9rLjTBKiSdhCWDHLTCmMS1PRkI71ASy8opBeQJrhYfjNdEDh-Hd2qNjEoT2MWOD41fgwmqAna1abVr3-e7fhvw0_AhlPsu8kPbIFGns7kKVgPX_Jxlp4VWvoBCQjjJQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEIAHXQX14Ftcnzl400LTtJvmKD5YURfRVfZWkzZhF5bt2naFvfkf_If-EpNua1FU0FMPTUOYTDozZOYbgAPbJdIhMtKxiSKWG9nEYi4nlnIbgnqe7wsc5c0maKvldzrspigKS8ts9_JKMv9TV8VuWHsrlsk-N-Aoz6LTMONqi2US-W7vHqpqSDsnZRq4nl4Bs4tSme_n-GyOKh_zy7Vobm3Ol_63zmVYLLxLdDxRhxWYkoNVWLj-QLOma_CoFQPdJPGoK7O3l9c2T5Kxfp6lBtKAiv4yR8hQFE26eTxB8GZjFCs0jPtjU8asVRbxQYROe_Gwy02vCYnk0wQanq7D_flZ-6RpFW0WrJA0SGZRJYQnHZtjHdop7Z-EQkqiMA997ujwiDOPUM7sUFKPGXwcx6GvIulKKShWDtmA2iAeyE1AHlMsCn1XCFu6TOizjkkUCZNL2iCKO3XApbSDsGCQm1YY_aCiJxvpBVp6QS69gNbh8OOb4YTA8evonXITg-I0poHT8I0fQyiuw1G5adXrn2fb-tvwfZhrtq-vgquL1uU2zDu5DphcwR2oZclI7sJs-Jz10mQv19h3tzfmCQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3BTtwwEIZHhVYIDlAKiC3Q-sANIuI4WcdHBKxatV2tVEDcUju2tUgoWZKAtDfegTfkSepJsqRFLRLilEMSyxpP4hl5_m8Adv2QmYAZ7XITy7xQ-8wToWSeDfuKR1EcK6rrZhN8OIwvLsToDxV_Xe0-O5JsNA1Iacqqg4m2B53wjbrIxcNKdIRIRR6fg7chNg3CfP3neaeM9GtqJoL23GyE38pm_j3G31tTF28-OSKtd57Byuvn_B6W26iTHDZusgpvTPYBln48IlvLNfjlHIaMivxmbKqHu_tTWRRTdz0pEd5A2r4z-wTpiliGnjdo3mpKcksm-dUU5c3OlYnMNDm-zCdjiT0oDDHXDUy8XIezwcnp0Revbb_gpazPKo9bpSIT-JK6lM-6uCVVxjBLZRrLwKVNUkSMS-GnhkcCsXKSprHVJjRGcWoDtgHzWZ6ZTSCRsEKncaiUb0Kh3D-AMq0V1pj2mZVBD-jM8knassmxRcZV0lGV0XqJs15SWy_hPdh7fGfSkDmefXp7tqBJ-5WWSdCPMb5hnPZgf7aA3e3_j_bxZY9_hoXR8SD5_nX4bQsWg9oFsIRwG-ar4sbswLv0trosi0-18_4Gdxfu7Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Prouhet%E2%80%93Tarry%E2%80%93Escott+problem%2C+indecomposability+of+polynomials+and+Diophantine+equations&rft.jtitle=The+Ramanujan+journal&rft.au=Hajdu%2C+L&rft.au=Papp%2C+%C3%81&rft.au=Tijdeman%2C+R&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=58&rft.issue=4&rft.spage=1075&rft.epage=1093&rft_id=info:doi/10.1007%2Fs11139-022-00555-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |